ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0iun Unicode version

Theorem 0iun 3735
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
0iun  |-  U_ x  e.  (/)  A  =  (/)

Proof of Theorem 0iun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 rex0 3265 . . . 4  |-  -.  E. x  e.  (/)  y  e.  A
2 eliun 3682 . . . 4  |-  ( y  e.  U_ x  e.  (/)  A  <->  E. x  e.  (/)  y  e.  A )
31, 2mtbir 628 . . 3  |-  -.  y  e.  U_ x  e.  (/)  A
4 noel 3255 . . 3  |-  -.  y  e.  (/)
53, 42false 649 . 2  |-  ( y  e.  U_ x  e.  (/)  A  <->  y  e.  (/) )
65eqriv 2078 1  |-  U_ x  e.  (/)  A  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1284    e. wcel 1433   E.wrex 2349   (/)c0 3251   U_ciun 3678
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-nul 3252  df-iun 3680
This theorem is referenced by:  iununir  3759  rdg0  5997
  Copyright terms: Public domain W3C validator