ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0npi Unicode version

Theorem 0npi 6503
Description: The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.)
Assertion
Ref Expression
0npi  |-  -.  (/)  e.  N.

Proof of Theorem 0npi
StepHypRef Expression
1 eqid 2081 . 2  |-  (/)  =  (/)
2 elni 6498 . . . 4  |-  ( (/)  e.  N.  <->  ( (/)  e.  om  /\  (/)  =/=  (/) ) )
32simprbi 269 . . 3  |-  ( (/)  e.  N.  ->  (/)  =/=  (/) )
43necon2bi 2300 . 2  |-  ( (/)  =  (/)  ->  -.  (/)  e.  N. )
51, 4ax-mp 7 1  |-  -.  (/)  e.  N.
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1284    e. wcel 1433    =/= wne 2245   (/)c0 3251   omcom 4331   N.cnpi 6462
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-v 2603  df-dif 2975  df-sn 3404  df-ni 6494
This theorem is referenced by:  elni2  6504
  Copyright terms: Public domain W3C validator