| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nelrdva | Unicode version | ||
| Description: Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017.) |
| Ref | Expression |
|---|---|
| nelrdva.1 |
|
| Ref | Expression |
|---|---|
| nelrdva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2082 |
. 2
| |
| 2 | eleq1 2141 |
. . . . . . 7
| |
| 3 | 2 | anbi2d 451 |
. . . . . 6
|
| 4 | neeq1 2258 |
. . . . . 6
| |
| 5 | 3, 4 | imbi12d 232 |
. . . . 5
|
| 6 | nelrdva.1 |
. . . . 5
| |
| 7 | 5, 6 | vtoclg 2658 |
. . . 4
|
| 8 | 7 | anabsi7 545 |
. . 3
|
| 9 | 8 | neneqd 2266 |
. 2
|
| 10 | 1, 9 | pm2.65da 619 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-v 2603 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |