![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr2i | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2i.1 |
![]() ![]() ![]() ![]() |
3eqtr2i.2 |
![]() ![]() ![]() ![]() |
3eqtr2i.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr2i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2i.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 3eqtr2i.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtr4i 2104 |
. 2
![]() ![]() ![]() ![]() |
4 | 3eqtr2i.3 |
. 2
![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtri 2101 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-cleq 2074 |
This theorem is referenced by: dfrab3 3240 iunid 3733 cnvcnv 4793 cocnvcnv2 4852 fmptap 5374 negdii 7392 halfpm6th 8251 numma 8520 numaddc 8524 6p5lem 8546 8p2e10 8556 binom2i 9583 flodddiv4 10334 6gcd4e2 10384 |
Copyright terms: Public domain | W3C validator |