![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr3ri | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
Ref | Expression |
---|---|
3eqtr3i.1 |
![]() ![]() ![]() ![]() |
3eqtr3i.2 |
![]() ![]() ![]() ![]() |
3eqtr3i.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr3ri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3i.3 |
. 2
![]() ![]() ![]() ![]() | |
2 | 3eqtr3i.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 3eqtr3i.2 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqtr3i 2103 |
. 2
![]() ![]() ![]() ![]() |
5 | 1, 4 | eqtr3i 2103 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-cleq 2074 |
This theorem is referenced by: indif2 3208 resdm2 4831 co01 4855 1mhlfehlf 8249 rei 9786 resqrexlemover 9896 6gcd4e2 10384 3lcm2e6 10539 |
Copyright terms: Public domain | W3C validator |