| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3ri | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 15-Aug-2004.) |
| Ref | Expression |
|---|---|
| 3eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3i.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 2 | 3eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3i.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 4 | 2, 3 | eqtr3i 2103 | . 2 ⊢ 𝐵 = 𝐶 |
| 5 | 1, 4 | eqtr3i 2103 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1284 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 |
| This theorem is referenced by: indif2 3208 resdm2 4831 co01 4855 1mhlfehlf 8249 rei 9786 resqrexlemover 9896 6gcd4e2 10384 3lcm2e6 10539 |
| Copyright terms: Public domain | W3C validator |