ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2zlemshrink Unicode version

Theorem rebtwn2zlemshrink 9262
Description: Lemma for rebtwn2z 9263. Shrinking the range around the given real number. (Contributed by Jim Kingdon, 13-Oct-2021.)
Assertion
Ref Expression
rebtwn2zlemshrink  |-  ( ( A  e.  RR  /\  J  e.  ( ZZ>= ` 
2 )  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )
Distinct variable groups:    A, m, x   
m, J
Allowed substitution hint:    J( x)

Proof of Theorem rebtwn2zlemshrink
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 939 . 2  |-  ( ( A  e.  RR  /\  J  e.  ( ZZ>= ` 
2 )  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  J  e.  (
ZZ>= `  2 ) )
2 3simpb 936 . 2  |-  ( ( A  e.  RR  /\  J  e.  ( ZZ>= ` 
2 )  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  J ) ) ) )
3 2z 8379 . . 3  |-  2  e.  ZZ
4 oveq2 5540 . . . . . . . 8  |-  ( w  =  2  ->  (
m  +  w )  =  ( m  + 
2 ) )
54breq2d 3797 . . . . . . 7  |-  ( w  =  2  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  2 ) ) )
65anbi2d 451 . . . . . 6  |-  ( w  =  2  ->  (
( m  <  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <  A  /\  A  <  ( m  +  2 ) ) ) )
76rexbidv 2369 . . . . 5  |-  ( w  =  2  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  2 ) ) ) )
87anbi2d 451 . . . 4  |-  ( w  =  2  ->  (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) ) )  <-> 
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  + 
2 ) ) ) ) )
98imbi1d 229 . . 3  |-  ( w  =  2  ->  (
( ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )  <->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  + 
2 ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
10 oveq2 5540 . . . . . . . 8  |-  ( w  =  k  ->  (
m  +  w )  =  ( m  +  k ) )
1110breq2d 3797 . . . . . . 7  |-  ( w  =  k  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  k ) ) )
1211anbi2d 451 . . . . . 6  |-  ( w  =  k  ->  (
( m  <  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <  A  /\  A  <  ( m  +  k ) ) ) )
1312rexbidv 2369 . . . . 5  |-  ( w  =  k  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  k ) ) ) )
1413anbi2d 451 . . . 4  |-  ( w  =  k  ->  (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) ) )  <-> 
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  k ) ) ) ) )
1514imbi1d 229 . . 3  |-  ( w  =  k  ->  (
( ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )  <->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  k ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
16 oveq2 5540 . . . . . . . 8  |-  ( w  =  ( k  +  1 )  ->  (
m  +  w )  =  ( m  +  ( k  +  1 ) ) )
1716breq2d 3797 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  ( k  +  1 ) ) ) )
1817anbi2d 451 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
( m  <  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) ) )
1918rexbidv 2369 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( k  +  1 ) ) ) ) )
2019anbi2d 451 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) ) )  <-> 
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) ) ) )
2120imbi1d 229 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )  <->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
22 oveq2 5540 . . . . . . . 8  |-  ( w  =  J  ->  (
m  +  w )  =  ( m  +  J ) )
2322breq2d 3797 . . . . . . 7  |-  ( w  =  J  ->  ( A  <  ( m  +  w )  <->  A  <  ( m  +  J ) ) )
2423anbi2d 451 . . . . . 6  |-  ( w  =  J  ->  (
( m  <  A  /\  A  <  ( m  +  w ) )  <-> 
( m  <  A  /\  A  <  ( m  +  J ) ) ) )
2524rexbidv 2369 . . . . 5  |-  ( w  =  J  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) )  <->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  J ) ) ) )
2625anbi2d 451 . . . 4  |-  ( w  =  J  ->  (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  w ) ) )  <-> 
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  J ) ) ) ) )
2726imbi1d 229 . . 3  |-  ( w  =  J  ->  (
( ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  w ) ) )  ->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )  <->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
28 breq1 3788 . . . . . . 7  |-  ( m  =  x  ->  (
m  <  A  <->  x  <  A ) )
29 oveq1 5539 . . . . . . . 8  |-  ( m  =  x  ->  (
m  +  2 )  =  ( x  + 
2 ) )
3029breq2d 3797 . . . . . . 7  |-  ( m  =  x  ->  ( A  <  ( m  + 
2 )  <->  A  <  ( x  +  2 ) ) )
3128, 30anbi12d 456 . . . . . 6  |-  ( m  =  x  ->  (
( m  <  A  /\  A  <  ( m  +  2 ) )  <-> 
( x  <  A  /\  A  <  ( x  +  2 ) ) ) )
3231cbvrexv 2578 . . . . 5  |-  ( E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  + 
2 ) )  <->  E. x  e.  ZZ  ( x  < 
A  /\  A  <  ( x  +  2 ) ) )
3332biimpi 118 . . . 4  |-  ( E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  + 
2 ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )
3433adantl 271 . . 3  |-  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  + 
2 ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )
35 rebtwn2zlemstep 9261 . . . . . 6  |-  ( ( k  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  k ) ) )
36353expia 1140 . . . . 5  |-  ( ( k  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR )  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) )  ->  E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  k ) ) ) )
3736imdistanda 436 . . . 4  |-  ( k  e.  ( ZZ>= `  2
)  ->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  ( A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  k ) ) ) ) )
3837imim1d 74 . . 3  |-  ( k  e.  ( ZZ>= `  2
)  ->  ( (
( A  e.  RR  /\ 
E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  k ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )  ->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  ( k  +  1 ) ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) ) )
393, 9, 15, 21, 27, 34, 38uzind4i 8680 . 2  |-  ( J  e.  ( ZZ>= `  2
)  ->  ( ( A  e.  RR  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) ) )
401, 2, 39sylc 61 1  |-  ( ( A  e.  RR  /\  J  e.  ( ZZ>= ` 
2 )  /\  E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  J ) ) )  ->  E. x  e.  ZZ  ( x  <  A  /\  A  <  ( x  + 
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433   E.wrex 2349   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   RRcr 6980   1c1 6982    + caddc 6984    < clt 7153   2c2 8089   ZZcz 8351   ZZ>=cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620
This theorem is referenced by:  rebtwn2z  9263
  Copyright terms: Public domain W3C validator