ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4p4e8 Unicode version

Theorem 4p4e8 8177
Description: 4 + 4 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
4p4e8  |-  ( 4  +  4 )  =  8

Proof of Theorem 4p4e8
StepHypRef Expression
1 df-4 8100 . . . 4  |-  4  =  ( 3  +  1 )
21oveq2i 5543 . . 3  |-  ( 4  +  4 )  =  ( 4  +  ( 3  +  1 ) )
3 4cn 8117 . . . 4  |-  4  e.  CC
4 3cn 8114 . . . 4  |-  3  e.  CC
5 ax-1cn 7069 . . . 4  |-  1  e.  CC
63, 4, 5addassi 7127 . . 3  |-  ( ( 4  +  3 )  +  1 )  =  ( 4  +  ( 3  +  1 ) )
72, 6eqtr4i 2104 . 2  |-  ( 4  +  4 )  =  ( ( 4  +  3 )  +  1 )
8 df-8 8104 . . 3  |-  8  =  ( 7  +  1 )
9 4p3e7 8176 . . . 4  |-  ( 4  +  3 )  =  7
109oveq1i 5542 . . 3  |-  ( ( 4  +  3 )  +  1 )  =  ( 7  +  1 )
118, 10eqtr4i 2104 . 2  |-  8  =  ( ( 4  +  3 )  +  1 )
127, 11eqtr4i 2104 1  |-  ( 4  +  4 )  =  8
Colors of variables: wff set class
Syntax hints:    = wceq 1284  (class class class)co 5532   1c1 6982    + caddc 6984   3c3 8090   4c4 8091   7c7 8094   8c8 8095
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-addrcl 7073  ax-addass 7078
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-iota 4887  df-fv 4930  df-ov 5535  df-2 8098  df-3 8099  df-4 8100  df-5 8101  df-6 8102  df-7 8103  df-8 8104
This theorem is referenced by:  4t2e8  8190
  Copyright terms: Public domain W3C validator