ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9cn Unicode version

Theorem 9cn 8127
Description: The number 9 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
9cn  |-  9  e.  CC

Proof of Theorem 9cn
StepHypRef Expression
1 9re 8126 . 2  |-  9  e.  RR
21recni 7131 1  |-  9  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 1433   CCcc 6979   9c9 8096
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-resscn 7068  ax-1re 7070  ax-addrcl 7073
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-in 2979  df-ss 2986  df-2 8098  df-3 8099  df-4 8100  df-5 8101  df-6 8102  df-7 8103  df-8 8104  df-9 8105
This theorem is referenced by:  10m1e9  8572  9t2e18  8598  9t8e72  8604  9t9e81  8605  9t11e99  8606  3dvdsdec  10264  3dvds2dec  10265
  Copyright terms: Public domain W3C validator