| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3dvds2dec | Unicode version | ||
| Description: A decimal number is
divisible by three iff the sum of its three "digits"
is divisible by three. The term "digits" in its narrow sense
is only
correct if |
| Ref | Expression |
|---|---|
| 3dvdsdec.a |
|
| 3dvdsdec.b |
|
| 3dvds2dec.c |
|
| Ref | Expression |
|---|---|
| 3dvds2dec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3dvdsdec.a |
. . . . 5
| |
| 2 | 3dvdsdec.b |
. . . . 5
| |
| 3 | 1, 2 | 3dec 9642 |
. . . 4
|
| 4 | sq10e99m1 9641 |
. . . . . . . 8
| |
| 5 | 4 | oveq1i 5542 |
. . . . . . 7
|
| 6 | 9nn0 8312 |
. . . . . . . . . 10
| |
| 7 | 6, 6 | deccl 8491 |
. . . . . . . . 9
|
| 8 | 7 | nn0cni 8300 |
. . . . . . . 8
|
| 9 | ax-1cn 7069 |
. . . . . . . 8
| |
| 10 | 1 | nn0cni 8300 |
. . . . . . . 8
|
| 11 | 8, 9, 10 | adddiri 7130 |
. . . . . . 7
|
| 12 | 10 | mulid2i 7122 |
. . . . . . . 8
|
| 13 | 12 | oveq2i 5543 |
. . . . . . 7
|
| 14 | 5, 11, 13 | 3eqtri 2105 |
. . . . . 6
|
| 15 | 9p1e10 8479 |
. . . . . . . . 9
| |
| 16 | 15 | eqcomi 2085 |
. . . . . . . 8
|
| 17 | 16 | oveq1i 5542 |
. . . . . . 7
|
| 18 | 9cn 8127 |
. . . . . . . 8
| |
| 19 | 2 | nn0cni 8300 |
. . . . . . . 8
|
| 20 | 18, 9, 19 | adddiri 7130 |
. . . . . . 7
|
| 21 | 19 | mulid2i 7122 |
. . . . . . . 8
|
| 22 | 21 | oveq2i 5543 |
. . . . . . 7
|
| 23 | 17, 20, 22 | 3eqtri 2105 |
. . . . . 6
|
| 24 | 14, 23 | oveq12i 5544 |
. . . . 5
|
| 25 | 24 | oveq1i 5542 |
. . . 4
|
| 26 | 8, 10 | mulcli 7124 |
. . . . . 6
|
| 27 | 18, 19 | mulcli 7124 |
. . . . . 6
|
| 28 | add4 7269 |
. . . . . . 7
| |
| 29 | 28 | oveq1d 5547 |
. . . . . 6
|
| 30 | 26, 10, 27, 19, 29 | mp4an 417 |
. . . . 5
|
| 31 | 26, 27 | addcli 7123 |
. . . . . 6
|
| 32 | 10, 19 | addcli 7123 |
. . . . . 6
|
| 33 | 3dvds2dec.c |
. . . . . . 7
| |
| 34 | 33 | nn0cni 8300 |
. . . . . 6
|
| 35 | 31, 32, 34 | addassi 7127 |
. . . . 5
|
| 36 | 9t11e99 8606 |
. . . . . . . . . . 11
| |
| 37 | 36 | eqcomi 2085 |
. . . . . . . . . 10
|
| 38 | 37 | oveq1i 5542 |
. . . . . . . . 9
|
| 39 | 1nn0 8304 |
. . . . . . . . . . . 12
| |
| 40 | 39, 39 | deccl 8491 |
. . . . . . . . . . 11
|
| 41 | 40 | nn0cni 8300 |
. . . . . . . . . 10
|
| 42 | 18, 41, 10 | mulassi 7128 |
. . . . . . . . 9
|
| 43 | 38, 42 | eqtri 2101 |
. . . . . . . 8
|
| 44 | 43 | oveq1i 5542 |
. . . . . . 7
|
| 45 | 41, 10 | mulcli 7124 |
. . . . . . . . 9
|
| 46 | 18, 45, 19 | adddii 7129 |
. . . . . . . 8
|
| 47 | 46 | eqcomi 2085 |
. . . . . . 7
|
| 48 | 3t3e9 8189 |
. . . . . . . . . 10
| |
| 49 | 48 | eqcomi 2085 |
. . . . . . . . 9
|
| 50 | 49 | oveq1i 5542 |
. . . . . . . 8
|
| 51 | 3cn 8114 |
. . . . . . . . 9
| |
| 52 | 45, 19 | addcli 7123 |
. . . . . . . . 9
|
| 53 | 51, 51, 52 | mulassi 7128 |
. . . . . . . 8
|
| 54 | 50, 53 | eqtri 2101 |
. . . . . . 7
|
| 55 | 44, 47, 54 | 3eqtri 2105 |
. . . . . 6
|
| 56 | 55 | oveq1i 5542 |
. . . . 5
|
| 57 | 30, 35, 56 | 3eqtri 2105 |
. . . 4
|
| 58 | 3, 25, 57 | 3eqtri 2105 |
. . 3
|
| 59 | 58 | breq2i 3793 |
. 2
|
| 60 | 3z 8380 |
. . 3
| |
| 61 | 1 | nn0zi 8373 |
. . . . 5
|
| 62 | 2 | nn0zi 8373 |
. . . . 5
|
| 63 | zaddcl 8391 |
. . . . 5
| |
| 64 | 61, 62, 63 | mp2an 416 |
. . . 4
|
| 65 | 33 | nn0zi 8373 |
. . . 4
|
| 66 | zaddcl 8391 |
. . . 4
| |
| 67 | 64, 65, 66 | mp2an 416 |
. . 3
|
| 68 | 40 | nn0zi 8373 |
. . . . . . . 8
|
| 69 | zmulcl 8404 |
. . . . . . . 8
| |
| 70 | 68, 61, 69 | mp2an 416 |
. . . . . . 7
|
| 71 | zaddcl 8391 |
. . . . . . 7
| |
| 72 | 70, 62, 71 | mp2an 416 |
. . . . . 6
|
| 73 | zmulcl 8404 |
. . . . . 6
| |
| 74 | 60, 72, 73 | mp2an 416 |
. . . . 5
|
| 75 | zmulcl 8404 |
. . . . 5
| |
| 76 | 60, 74, 75 | mp2an 416 |
. . . 4
|
| 77 | dvdsmul1 10217 |
. . . . 5
| |
| 78 | 60, 74, 77 | mp2an 416 |
. . . 4
|
| 79 | 76, 78 | pm3.2i 266 |
. . 3
|
| 80 | dvdsadd2b 10242 |
. . 3
| |
| 81 | 60, 67, 79, 80 | mp3an 1268 |
. 2
|
| 82 | 59, 81 | bitr4i 185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-5 8101 df-6 8102 df-7 8103 df-8 8104 df-9 8105 df-n0 8289 df-z 8352 df-dec 8478 df-uz 8620 df-iseq 9432 df-iexp 9476 df-dvds 10196 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |