ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3dvdsdec Unicode version

Theorem 3dvdsdec 10264
Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if  A and  B actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers  A and  B, especially if  A is itself a decimal number, e.g.  A  = ; C D. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
3dvdsdec.a  |-  A  e. 
NN0
3dvdsdec.b  |-  B  e. 
NN0
Assertion
Ref Expression
3dvdsdec  |-  ( 3 
|| ; A B  <->  3  ||  ( A  +  B )
)

Proof of Theorem 3dvdsdec
StepHypRef Expression
1 dfdec10 8480 . . . 4  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
2 9p1e10 8479 . . . . . . . 8  |-  ( 9  +  1 )  = ; 1
0
32eqcomi 2085 . . . . . . 7  |- ; 1 0  =  ( 9  +  1 )
43oveq1i 5542 . . . . . 6  |-  (; 1 0  x.  A
)  =  ( ( 9  +  1 )  x.  A )
5 9cn 8127 . . . . . . 7  |-  9  e.  CC
6 ax-1cn 7069 . . . . . . 7  |-  1  e.  CC
7 3dvdsdec.a . . . . . . . 8  |-  A  e. 
NN0
87nn0cni 8300 . . . . . . 7  |-  A  e.  CC
95, 6, 8adddiri 7130 . . . . . 6  |-  ( ( 9  +  1 )  x.  A )  =  ( ( 9  x.  A )  +  ( 1  x.  A ) )
108mulid2i 7122 . . . . . . 7  |-  ( 1  x.  A )  =  A
1110oveq2i 5543 . . . . . 6  |-  ( ( 9  x.  A )  +  ( 1  x.  A ) )  =  ( ( 9  x.  A )  +  A
)
124, 9, 113eqtri 2105 . . . . 5  |-  (; 1 0  x.  A
)  =  ( ( 9  x.  A )  +  A )
1312oveq1i 5542 . . . 4  |-  ( (; 1
0  x.  A )  +  B )  =  ( ( ( 9  x.  A )  +  A )  +  B
)
145, 8mulcli 7124 . . . . 5  |-  ( 9  x.  A )  e.  CC
15 3dvdsdec.b . . . . . 6  |-  B  e. 
NN0
1615nn0cni 8300 . . . . 5  |-  B  e.  CC
1714, 8, 16addassi 7127 . . . 4  |-  ( ( ( 9  x.  A
)  +  A )  +  B )  =  ( ( 9  x.  A )  +  ( A  +  B ) )
181, 13, 173eqtri 2105 . . 3  |- ; A B  =  ( ( 9  x.  A
)  +  ( A  +  B ) )
1918breq2i 3793 . 2  |-  ( 3 
|| ; A B  <->  3  ||  (
( 9  x.  A
)  +  ( A  +  B ) ) )
20 3z 8380 . . 3  |-  3  e.  ZZ
217nn0zi 8373 . . . 4  |-  A  e.  ZZ
2215nn0zi 8373 . . . 4  |-  B  e.  ZZ
23 zaddcl 8391 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  ZZ )
2421, 22, 23mp2an 416 . . 3  |-  ( A  +  B )  e.  ZZ
25 9nn 8200 . . . . . 6  |-  9  e.  NN
2625nnzi 8372 . . . . 5  |-  9  e.  ZZ
27 zmulcl 8404 . . . . 5  |-  ( ( 9  e.  ZZ  /\  A  e.  ZZ )  ->  ( 9  x.  A
)  e.  ZZ )
2826, 21, 27mp2an 416 . . . 4  |-  ( 9  x.  A )  e.  ZZ
29 zmulcl 8404 . . . . . . 7  |-  ( ( 3  e.  ZZ  /\  A  e.  ZZ )  ->  ( 3  x.  A
)  e.  ZZ )
3020, 21, 29mp2an 416 . . . . . 6  |-  ( 3  x.  A )  e.  ZZ
31 dvdsmul1 10217 . . . . . 6  |-  ( ( 3  e.  ZZ  /\  ( 3  x.  A
)  e.  ZZ )  ->  3  ||  (
3  x.  ( 3  x.  A ) ) )
3220, 30, 31mp2an 416 . . . . 5  |-  3  ||  ( 3  x.  (
3  x.  A ) )
33 3t3e9 8189 . . . . . . . 8  |-  ( 3  x.  3 )  =  9
3433eqcomi 2085 . . . . . . 7  |-  9  =  ( 3  x.  3 )
3534oveq1i 5542 . . . . . 6  |-  ( 9  x.  A )  =  ( ( 3  x.  3 )  x.  A
)
36 3cn 8114 . . . . . . 7  |-  3  e.  CC
3736, 36, 8mulassi 7128 . . . . . 6  |-  ( ( 3  x.  3 )  x.  A )  =  ( 3  x.  (
3  x.  A ) )
3835, 37eqtri 2101 . . . . 5  |-  ( 9  x.  A )  =  ( 3  x.  (
3  x.  A ) )
3932, 38breqtrri 3810 . . . 4  |-  3  ||  ( 9  x.  A
)
4028, 39pm3.2i 266 . . 3  |-  ( ( 9  x.  A )  e.  ZZ  /\  3  ||  ( 9  x.  A
) )
41 dvdsadd2b 10242 . . 3  |-  ( ( 3  e.  ZZ  /\  ( A  +  B
)  e.  ZZ  /\  ( ( 9  x.  A )  e.  ZZ  /\  3  ||  ( 9  x.  A ) ) )  ->  ( 3 
||  ( A  +  B )  <->  3  ||  ( ( 9  x.  A )  +  ( A  +  B ) ) ) )
4220, 24, 40, 41mp3an 1268 . 2  |-  ( 3 
||  ( A  +  B )  <->  3  ||  ( ( 9  x.  A )  +  ( A  +  B ) ) )
4319, 42bitr4i 185 1  |-  ( 3 
|| ; A B  <->  3  ||  ( A  +  B )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   0cc0 6981   1c1 6982    + caddc 6984    x. cmul 6986   3c3 8090   9c9 8096   NN0cn0 8288   ZZcz 8351  ;cdc 8477    || cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-5 8101  df-6 8102  df-7 8103  df-8 8104  df-9 8105  df-n0 8289  df-z 8352  df-dec 8478  df-dvds 10196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator