ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid0 Unicode version

Theorem addid0 7477
Description: If adding a number to a another number yields the other number, the added number must be  0. This shows that  0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021.)
Assertion
Ref Expression
addid0  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  +  Y )  =  X  <-> 
Y  =  0 ) )

Proof of Theorem addid0
StepHypRef Expression
1 simpl 107 . . . 4  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  X  e.  CC )
2 simpr 108 . . . 4  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  Y  e.  CC )
31, 1, 2subaddd 7437 . . 3  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  -  X )  =  Y  <-> 
( X  +  Y
)  =  X ) )
4 eqcom 2083 . . . . 5  |-  ( ( X  -  X )  =  Y  <->  Y  =  ( X  -  X
) )
5 simpr 108 . . . . . . 7  |-  ( ( X  e.  CC  /\  Y  =  ( X  -  X ) )  ->  Y  =  ( X  -  X ) )
6 subid 7327 . . . . . . . 8  |-  ( X  e.  CC  ->  ( X  -  X )  =  0 )
76adantr 270 . . . . . . 7  |-  ( ( X  e.  CC  /\  Y  =  ( X  -  X ) )  -> 
( X  -  X
)  =  0 )
85, 7eqtrd 2113 . . . . . 6  |-  ( ( X  e.  CC  /\  Y  =  ( X  -  X ) )  ->  Y  =  0 )
98ex 113 . . . . 5  |-  ( X  e.  CC  ->  ( Y  =  ( X  -  X )  ->  Y  =  0 ) )
104, 9syl5bi 150 . . . 4  |-  ( X  e.  CC  ->  (
( X  -  X
)  =  Y  ->  Y  =  0 ) )
1110adantr 270 . . 3  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  -  X )  =  Y  ->  Y  =  0 ) )
123, 11sylbird 168 . 2  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  +  Y )  =  X  ->  Y  =  0 ) )
13 oveq2 5540 . . . . 5  |-  ( Y  =  0  ->  ( X  +  Y )  =  ( X  + 
0 ) )
14 addid1 7246 . . . . 5  |-  ( X  e.  CC  ->  ( X  +  0 )  =  X )
1513, 14sylan9eqr 2135 . . . 4  |-  ( ( X  e.  CC  /\  Y  =  0 )  ->  ( X  +  Y )  =  X )
1615ex 113 . . 3  |-  ( X  e.  CC  ->  ( Y  =  0  ->  ( X  +  Y )  =  X ) )
1716adantr 270 . 2  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( Y  =  0  ->  ( X  +  Y )  =  X ) )
1812, 17impbid 127 1  |-  ( ( X  e.  CC  /\  Y  e.  CC )  ->  ( ( X  +  Y )  =  X  <-> 
Y  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433  (class class class)co 5532   CCcc 6979   0cc0 6981    + caddc 6984    - cmin 7279
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280  ax-resscn 7068  ax-1cn 7069  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-sub 7281
This theorem is referenced by:  addn0nid  7478
  Copyright terms: Public domain W3C validator