ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-xp Unicode version

Definition df-xp 4369
Description: Define the cross product of two classes. Definition 9.11 of [Quine] p. 64. For example, ( { 1 , 5 }  X. { 2 , 7 } ) = ( {  <. 1 , 2  >.,  <. 1 , 7  >. }  u. {  <. 5 , 2  >.,  <. 5 , 7  >. } ) . Another example is that the set of rational numbers are defined in using the cross-product ( Z  X. N ) ; the left- and right-hand sides of the cross-product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-xp  |-  ( A  X.  B )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  B ) }
Distinct variable groups:    x, y, A   
x, B, y

Detailed syntax breakdown of Definition df-xp
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2cxp 4361 . 2  class  ( A  X.  B )
4 vx . . . . . 6  setvar  x
54cv 1283 . . . . 5  class  x
65, 1wcel 1433 . . . 4  wff  x  e.  A
7 vy . . . . . 6  setvar  y
87cv 1283 . . . . 5  class  y
98, 2wcel 1433 . . . 4  wff  y  e.  B
106, 9wa 102 . . 3  wff  ( x  e.  A  /\  y  e.  B )
1110, 4, 7copab 3838 . 2  class  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }
123, 11wceq 1284 1  wff  ( A  X.  B )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  B ) }
Colors of variables: wff set class
This definition is referenced by:  xpeq1  4377  xpeq2  4378  elxpi  4379  elxp  4380  nfxp  4389  fconstmpt  4405  brab2a  4411  xpundi  4414  xpundir  4415  opabssxp  4432  csbxpg  4439  xpss12  4463  inxp  4488  dmxpm  4573  resopab  4672  cnvxp  4762  xpcom  4884  dfxp3  5840  dmaddpq  6569  dmmulpq  6570  enq0enq  6621  npsspw  6661  shftfvalg  9706  shftfval  9709
  Copyright terms: Public domain W3C validator