![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq2i | Unicode version |
Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eleq2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eleq2 2142 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-cleq 2074 df-clel 2077 |
This theorem is referenced by: eleq12i 2146 eleqtri 2153 eleq2s 2173 hbxfreq 2185 abeq2i 2189 abeq1i 2190 nfceqi 2215 raleqbii 2378 rexeqbii 2379 rabeq2i 2598 elab2g 2740 elrabf 2747 elrab3t 2748 elrab2 2751 cbvsbc 2842 elin2 3156 dfnul2 3253 noel 3255 rabn0m 3272 rabeq0 3274 eltpg 3438 tpid3g 3505 oprcl 3594 elunirab 3614 elintrab 3648 exss 3982 elop 3986 opm 3989 brabsb 4016 brabga 4019 pofun 4067 elsuci 4158 elsucg 4159 elsuc2g 4160 ordsucim 4244 peano2 4336 elxp 4380 brab2a 4411 brab2ga 4433 elcnv 4530 dmmrnm 4572 elrnmptg 4604 opelres 4635 rninxp 4784 funco 4960 elfv 5196 nfvres 5227 fvopab3g 5266 fvmptssdm 5276 fmptco 5351 funfvima 5411 fliftel 5453 acexmidlema 5523 acexmidlemb 5524 acexmidlem2 5529 eloprabga 5611 elrnmpt2 5634 ovid 5637 offval 5739 xporderlem 5872 brtpos2 5889 issmo 5926 smores3 5931 tfrlem7 5956 tfrlem9 5958 tfr0 5960 tfri2 5975 el1o 6043 dif1o 6044 elecg 6167 brecop 6219 erovlem 6221 oviec 6235 isfi 6264 enssdom 6265 xpcomco 6323 fnfi 6388 elni 6498 nlt1pig 6531 0nnq 6554 dfmq0qs 6619 dfplq0qs 6620 nqnq0 6631 elinp 6664 0npr 6673 ltdfpr 6696 nqprl 6741 nqpru 6742 addnqprlemfl 6749 addnqprlemfu 6750 mulnqprlemfl 6765 mulnqprlemfu 6766 cauappcvgprlemladdru 6846 addsrpr 6922 mulsrpr 6923 opelcn 6995 opelreal 6996 elreal 6997 elreal2 6999 0ncn 7000 addcnsr 7002 mulcnsr 7003 addvalex 7012 peano1nnnn 7020 peano2nnnn 7021 xrlenlt 7177 1nn 8050 peano2nn 8051 elnn0 8290 elnnne0 8302 un0addcl 8321 un0mulcl 8322 uztrn2 8636 elnnuz 8655 elnn0uz 8656 elq 8707 elxr 8850 elfzm1b 9115 frecfzennn 9419 iseqf 9444 iser0 9471 iser0f 9472 clim2iser 10175 clim2iser2 10176 iisermulc2 10178 iserile 10180 climserile 10183 divides 10197 dvdsflip 10251 fz01or 10278 infssuzex 10345 ialgrlemconst 10425 ialgrf 10427 bdceq 10633 bj-nntrans 10746 bj-nnelirr 10748 |
Copyright terms: Public domain | W3C validator |