| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isocnv | Unicode version | ||
| Description: Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isocnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 5159 |
. . . 4
| |
| 2 | 1 | adantr 270 |
. . 3
|
| 3 | f1ocnvfv2 5438 |
. . . . . . . 8
| |
| 4 | 3 | adantrr 462 |
. . . . . . 7
|
| 5 | f1ocnvfv2 5438 |
. . . . . . . 8
| |
| 6 | 5 | adantrl 461 |
. . . . . . 7
|
| 7 | 4, 6 | breq12d 3798 |
. . . . . 6
|
| 8 | 7 | adantlr 460 |
. . . . 5
|
| 9 | f1of 5146 |
. . . . . . 7
| |
| 10 | 1, 9 | syl 14 |
. . . . . 6
|
| 11 | ffvelrn 5321 |
. . . . . . . . 9
| |
| 12 | ffvelrn 5321 |
. . . . . . . . 9
| |
| 13 | 11, 12 | anim12dan 564 |
. . . . . . . 8
|
| 14 | breq1 3788 |
. . . . . . . . . . 11
| |
| 15 | fveq2 5198 |
. . . . . . . . . . . 12
| |
| 16 | 15 | breq1d 3795 |
. . . . . . . . . . 11
|
| 17 | 14, 16 | bibi12d 233 |
. . . . . . . . . 10
|
| 18 | bicom 138 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | syl6bb 194 |
. . . . . . . . 9
|
| 20 | fveq2 5198 |
. . . . . . . . . . 11
| |
| 21 | 20 | breq2d 3797 |
. . . . . . . . . 10
|
| 22 | breq2 3789 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | bibi12d 233 |
. . . . . . . . 9
|
| 24 | 19, 23 | rspc2va 2714 |
. . . . . . . 8
|
| 25 | 13, 24 | sylan 277 |
. . . . . . 7
|
| 26 | 25 | an32s 532 |
. . . . . 6
|
| 27 | 10, 26 | sylanl1 394 |
. . . . 5
|
| 28 | 8, 27 | bitr3d 188 |
. . . 4
|
| 29 | 28 | ralrimivva 2443 |
. . 3
|
| 30 | 2, 29 | jca 300 |
. 2
|
| 31 | df-isom 4931 |
. 2
| |
| 32 | df-isom 4931 |
. 2
| |
| 33 | 30, 31, 32 | 3imtr4i 199 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-isom 4931 |
| This theorem is referenced by: isores1 5474 isose 5480 isopo 5482 isoso 5484 isoti 6420 infrenegsupex 8682 |
| Copyright terms: Public domain | W3C validator |