| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovdirg | Unicode version | ||
| Description: Convert an operation reverse distributive law to class notation. (Contributed by Mario Carneiro, 19-Oct-2014.) |
| Ref | Expression |
|---|---|
| caovdirg.1 |
|
| Ref | Expression |
|---|---|
| caovdirg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdirg.1 |
. . 3
| |
| 2 | 1 | ralrimivvva 2444 |
. 2
|
| 3 | oveq1 5539 |
. . . . 5
| |
| 4 | 3 | oveq1d 5547 |
. . . 4
|
| 5 | oveq1 5539 |
. . . . 5
| |
| 6 | 5 | oveq1d 5547 |
. . . 4
|
| 7 | 4, 6 | eqeq12d 2095 |
. . 3
|
| 8 | oveq2 5540 |
. . . . 5
| |
| 9 | 8 | oveq1d 5547 |
. . . 4
|
| 10 | oveq1 5539 |
. . . . 5
| |
| 11 | 10 | oveq2d 5548 |
. . . 4
|
| 12 | 9, 11 | eqeq12d 2095 |
. . 3
|
| 13 | oveq2 5540 |
. . . 4
| |
| 14 | oveq2 5540 |
. . . . 5
| |
| 15 | oveq2 5540 |
. . . . 5
| |
| 16 | 14, 15 | oveq12d 5550 |
. . . 4
|
| 17 | 13, 16 | eqeq12d 2095 |
. . 3
|
| 18 | 7, 12, 17 | rspc3v 2716 |
. 2
|
| 19 | 2, 18 | mpan9 275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 |
| This theorem is referenced by: caovdird 5699 caovlem2d 5713 |
| Copyright terms: Public domain | W3C validator |