ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvexfo Unicode version

Theorem cbvexfo 5446
Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.)
Hypothesis
Ref Expression
cbvfo.1  |-  ( ( F `  x )  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvexfo  |-  ( F : A -onto-> B  -> 
( E. x  e.  A  ph  <->  E. y  e.  B  ps )
)
Distinct variable groups:    x, y, A   
y, B    x, F, y    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)    B( x)

Proof of Theorem cbvexfo
StepHypRef Expression
1 fofn 5128 . . 3  |-  ( F : A -onto-> B  ->  F  Fn  A )
2 cbvfo.1 . . . . . 6  |-  ( ( F `  x )  =  y  ->  ( ph 
<->  ps ) )
32bicomd 139 . . . . 5  |-  ( ( F `  x )  =  y  ->  ( ps 
<-> 
ph ) )
43eqcoms 2084 . . . 4  |-  ( y  =  ( F `  x )  ->  ( ps 
<-> 
ph ) )
54rexrn 5325 . . 3  |-  ( F  Fn  A  ->  ( E. y  e.  ran  F ps  <->  E. x  e.  A  ph ) )
61, 5syl 14 . 2  |-  ( F : A -onto-> B  -> 
( E. y  e. 
ran  F ps  <->  E. x  e.  A  ph ) )
7 forn 5129 . . 3  |-  ( F : A -onto-> B  ->  ran  F  =  B )
87rexeqdv 2556 . 2  |-  ( F : A -onto-> B  -> 
( E. y  e. 
ran  F ps  <->  E. y  e.  B  ps )
)
96, 8bitr3d 188 1  |-  ( F : A -onto-> B  -> 
( E. x  e.  A  ph  <->  E. y  e.  B  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1284   E.wrex 2349   ran crn 4364    Fn wfn 4917   -onto->wfo 4920   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fo 4928  df-fv 4930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator