![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvmpt2x | Unicode version |
Description: Rule to change the bound
variable in a maps-to function, using implicit
substitution. This version of cbvmpt2 5603 allows ![]() ![]() |
Ref | Expression |
---|---|
cbvmpt2x.1 |
![]() ![]() ![]() ![]() |
cbvmpt2x.2 |
![]() ![]() ![]() ![]() |
cbvmpt2x.3 |
![]() ![]() ![]() ![]() |
cbvmpt2x.4 |
![]() ![]() ![]() ![]() |
cbvmpt2x.5 |
![]() ![]() ![]() ![]() |
cbvmpt2x.6 |
![]() ![]() ![]() ![]() |
cbvmpt2x.7 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cbvmpt2x.8 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cbvmpt2x |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1461 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | cbvmpt2x.1 |
. . . . . 6
![]() ![]() ![]() ![]() | |
3 | 2 | nfcri 2213 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | nfan 1497 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | cbvmpt2x.3 |
. . . . 5
![]() ![]() ![]() ![]() | |
6 | 5 | nfeq2 2230 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | nfan 1497 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | nfv 1461 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
9 | nfcv 2219 |
. . . . . 6
![]() ![]() ![]() ![]() | |
10 | 9 | nfcri 2213 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
11 | 8, 10 | nfan 1497 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | cbvmpt2x.4 |
. . . . 5
![]() ![]() ![]() ![]() | |
13 | 12 | nfeq2 2230 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
14 | 11, 13 | nfan 1497 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | nfv 1461 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
16 | cbvmpt2x.2 |
. . . . . 6
![]() ![]() ![]() ![]() | |
17 | 16 | nfcri 2213 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
18 | 15, 17 | nfan 1497 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | cbvmpt2x.5 |
. . . . 5
![]() ![]() ![]() ![]() | |
20 | 19 | nfeq2 2230 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
21 | 18, 20 | nfan 1497 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | nfv 1461 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | cbvmpt2x.6 |
. . . . 5
![]() ![]() ![]() ![]() | |
24 | 23 | nfeq2 2230 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
25 | 22, 24 | nfan 1497 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | eleq1 2141 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
27 | 26 | adantr 270 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | cbvmpt2x.7 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
29 | 28 | eleq2d 2148 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | eleq1 2141 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
31 | 29, 30 | sylan9bb 449 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 27, 31 | anbi12d 456 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | cbvmpt2x.8 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
34 | 33 | eqeq2d 2092 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 32, 34 | anbi12d 456 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 7, 14, 21, 25, 35 | cbvoprab12 5598 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | df-mpt2 5537 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
38 | df-mpt2 5537 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
39 | 36, 37, 38 | 3eqtr4i 2111 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-opab 3840 df-oprab 5536 df-mpt2 5537 |
This theorem is referenced by: cbvmpt2 5603 mpt2mptsx 5843 dmmpt2ssx 5845 |
Copyright terms: Public domain | W3C validator |