| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmmpt2ssx | Unicode version | ||
| Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| fmpt2x.1 |
|
| Ref | Expression |
|---|---|
| dmmpt2ssx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2219 |
. . . . 5
| |
| 2 | nfcsb1v 2938 |
. . . . 5
| |
| 3 | nfcv 2219 |
. . . . 5
| |
| 4 | nfcv 2219 |
. . . . 5
| |
| 5 | nfcsb1v 2938 |
. . . . 5
| |
| 6 | nfcv 2219 |
. . . . . 6
| |
| 7 | nfcsb1v 2938 |
. . . . . 6
| |
| 8 | 6, 7 | nfcsb 2940 |
. . . . 5
|
| 9 | csbeq1a 2916 |
. . . . 5
| |
| 10 | csbeq1a 2916 |
. . . . . 6
| |
| 11 | csbeq1a 2916 |
. . . . . 6
| |
| 12 | 10, 11 | sylan9eqr 2135 |
. . . . 5
|
| 13 | 1, 2, 3, 4, 5, 8, 9, 12 | cbvmpt2x 5602 |
. . . 4
|
| 14 | fmpt2x.1 |
. . . 4
| |
| 15 | vex 2604 |
. . . . . . . 8
| |
| 16 | vex 2604 |
. . . . . . . 8
| |
| 17 | 15, 16 | op1std 5795 |
. . . . . . 7
|
| 18 | 17 | csbeq1d 2914 |
. . . . . 6
|
| 19 | 15, 16 | op2ndd 5796 |
. . . . . . . 8
|
| 20 | 19 | csbeq1d 2914 |
. . . . . . 7
|
| 21 | 20 | csbeq2dv 2931 |
. . . . . 6
|
| 22 | 18, 21 | eqtrd 2113 |
. . . . 5
|
| 23 | 22 | mpt2mptx 5615 |
. . . 4
|
| 24 | 13, 14, 23 | 3eqtr4i 2111 |
. . 3
|
| 25 | 24 | dmmptss 4837 |
. 2
|
| 26 | nfcv 2219 |
. . 3
| |
| 27 | nfcv 2219 |
. . . 4
| |
| 28 | 27, 2 | nfxp 4389 |
. . 3
|
| 29 | sneq 3409 |
. . . 4
| |
| 30 | 29, 9 | xpeq12d 4388 |
. . 3
|
| 31 | 26, 28, 30 | cbviun 3715 |
. 2
|
| 32 | 25, 31 | sseqtr4i 3032 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fv 4930 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 |
| This theorem is referenced by: mpt2exxg 5853 mpt2xopn0yelv 5877 |
| Copyright terms: Public domain | W3C validator |