ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvopab Unicode version

Theorem cbvopab 3849
Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.)
Hypotheses
Ref Expression
cbvopab.1  |-  F/ z
ph
cbvopab.2  |-  F/ w ph
cbvopab.3  |-  F/ x ps
cbvopab.4  |-  F/ y ps
cbvopab.5  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
cbvopab  |-  { <. x ,  y >.  |  ph }  =  { <. z ,  w >.  |  ps }
Distinct variable group:    x, y, z, w
Allowed substitution hints:    ph( x, y, z, w)    ps( x, y, z, w)

Proof of Theorem cbvopab
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 nfv 1461 . . . . 5  |-  F/ z  v  =  <. x ,  y >.
2 cbvopab.1 . . . . 5  |-  F/ z
ph
31, 2nfan 1497 . . . 4  |-  F/ z ( v  =  <. x ,  y >.  /\  ph )
4 nfv 1461 . . . . 5  |-  F/ w  v  =  <. x ,  y >.
5 cbvopab.2 . . . . 5  |-  F/ w ph
64, 5nfan 1497 . . . 4  |-  F/ w
( v  =  <. x ,  y >.  /\  ph )
7 nfv 1461 . . . . 5  |-  F/ x  v  =  <. z ,  w >.
8 cbvopab.3 . . . . 5  |-  F/ x ps
97, 8nfan 1497 . . . 4  |-  F/ x
( v  =  <. z ,  w >.  /\  ps )
10 nfv 1461 . . . . 5  |-  F/ y  v  =  <. z ,  w >.
11 cbvopab.4 . . . . 5  |-  F/ y ps
1210, 11nfan 1497 . . . 4  |-  F/ y ( v  =  <. z ,  w >.  /\  ps )
13 opeq12 3572 . . . . . 6  |-  ( ( x  =  z  /\  y  =  w )  -> 
<. x ,  y >.  =  <. z ,  w >. )
1413eqeq2d 2092 . . . . 5  |-  ( ( x  =  z  /\  y  =  w )  ->  ( v  =  <. x ,  y >.  <->  v  =  <. z ,  w >. ) )
15 cbvopab.5 . . . . 5  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph  <->  ps )
)
1614, 15anbi12d 456 . . . 4  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( v  = 
<. x ,  y >.  /\  ph )  <->  ( v  =  <. z ,  w >.  /\  ps ) ) )
173, 6, 9, 12, 16cbvex2 1838 . . 3  |-  ( E. x E. y ( v  =  <. x ,  y >.  /\  ph ) 
<->  E. z E. w
( v  =  <. z ,  w >.  /\  ps ) )
1817abbii 2194 . 2  |-  { v  |  E. x E. y ( v  = 
<. x ,  y >.  /\  ph ) }  =  { v  |  E. z E. w ( v  =  <. z ,  w >.  /\  ps ) }
19 df-opab 3840 . 2  |-  { <. x ,  y >.  |  ph }  =  { v  |  E. x E. y
( v  =  <. x ,  y >.  /\  ph ) }
20 df-opab 3840 . 2  |-  { <. z ,  w >.  |  ps }  =  { v  |  E. z E. w
( v  =  <. z ,  w >.  /\  ps ) }
2118, 19, 203eqtr4i 2111 1  |-  { <. x ,  y >.  |  ph }  =  { <. z ,  w >.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   F/wnf 1389   E.wex 1421   {cab 2067   <.cop 3401   {copab 3838
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840
This theorem is referenced by:  cbvopabv  3850  opelopabsb  4015
  Copyright terms: Public domain W3C validator