| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvopab | Unicode version | ||
| Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.) |
| Ref | Expression |
|---|---|
| cbvopab.1 |
|
| cbvopab.2 |
|
| cbvopab.3 |
|
| cbvopab.4 |
|
| cbvopab.5 |
|
| Ref | Expression |
|---|---|
| cbvopab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1461 |
. . . . 5
| |
| 2 | cbvopab.1 |
. . . . 5
| |
| 3 | 1, 2 | nfan 1497 |
. . . 4
|
| 4 | nfv 1461 |
. . . . 5
| |
| 5 | cbvopab.2 |
. . . . 5
| |
| 6 | 4, 5 | nfan 1497 |
. . . 4
|
| 7 | nfv 1461 |
. . . . 5
| |
| 8 | cbvopab.3 |
. . . . 5
| |
| 9 | 7, 8 | nfan 1497 |
. . . 4
|
| 10 | nfv 1461 |
. . . . 5
| |
| 11 | cbvopab.4 |
. . . . 5
| |
| 12 | 10, 11 | nfan 1497 |
. . . 4
|
| 13 | opeq12 3572 |
. . . . . 6
| |
| 14 | 13 | eqeq2d 2092 |
. . . . 5
|
| 15 | cbvopab.5 |
. . . . 5
| |
| 16 | 14, 15 | anbi12d 456 |
. . . 4
|
| 17 | 3, 6, 9, 12, 16 | cbvex2 1838 |
. . 3
|
| 18 | 17 | abbii 2194 |
. 2
|
| 19 | df-opab 3840 |
. 2
| |
| 20 | df-opab 3840 |
. 2
| |
| 21 | 18, 19, 20 | 3eqtr4i 2111 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-opab 3840 |
| This theorem is referenced by: cbvopabv 3850 opelopabsb 4015 |
| Copyright terms: Public domain | W3C validator |