| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelopabsb | Unicode version | ||
| Description: The law of concretion in terms of substitutions. (Contributed by NM, 30-Sep-2002.) (Revised by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| opelopabsb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elopab 4013 |
. . . 4
| |
| 2 | simpl 107 |
. . . . . . . 8
| |
| 3 | 2 | eqcomd 2086 |
. . . . . . 7
|
| 4 | vex 2604 |
. . . . . . . 8
| |
| 5 | vex 2604 |
. . . . . . . 8
| |
| 6 | 4, 5 | opth 3992 |
. . . . . . 7
|
| 7 | 3, 6 | sylib 120 |
. . . . . 6
|
| 8 | 7 | 2eximi 1532 |
. . . . 5
|
| 9 | eeanv 1848 |
. . . . . 6
| |
| 10 | isset 2605 |
. . . . . . 7
| |
| 11 | isset 2605 |
. . . . . . 7
| |
| 12 | 10, 11 | anbi12i 447 |
. . . . . 6
|
| 13 | 9, 12 | bitr4i 185 |
. . . . 5
|
| 14 | 8, 13 | sylib 120 |
. . . 4
|
| 15 | 1, 14 | sylbi 119 |
. . 3
|
| 16 | nfv 1461 |
. . . 4
| |
| 17 | nfv 1461 |
. . . 4
| |
| 18 | nfs1v 1856 |
. . . 4
| |
| 19 | nfs1v 1856 |
. . . . 5
| |
| 20 | 19 | nfsbxy 1859 |
. . . 4
|
| 21 | sbequ12 1694 |
. . . . 5
| |
| 22 | sbequ12 1694 |
. . . . 5
| |
| 23 | 21, 22 | sylan9bbr 450 |
. . . 4
|
| 24 | 16, 17, 18, 20, 23 | cbvopab 3849 |
. . 3
|
| 25 | 15, 24 | eleq2s 2173 |
. 2
|
| 26 | sbcex 2823 |
. . 3
| |
| 27 | spesbc 2899 |
. . . 4
| |
| 28 | sbcex 2823 |
. . . . 5
| |
| 29 | 28 | exlimiv 1529 |
. . . 4
|
| 30 | 27, 29 | syl 14 |
. . 3
|
| 31 | 26, 30 | jca 300 |
. 2
|
| 32 | opeq1 3570 |
. . . . 5
| |
| 33 | 32 | eleq1d 2147 |
. . . 4
|
| 34 | dfsbcq2 2818 |
. . . 4
| |
| 35 | 33, 34 | bibi12d 233 |
. . 3
|
| 36 | opeq2 3571 |
. . . . 5
| |
| 37 | 36 | eleq1d 2147 |
. . . 4
|
| 38 | dfsbcq2 2818 |
. . . . 5
| |
| 39 | 38 | sbcbidv 2872 |
. . . 4
|
| 40 | 37, 39 | bibi12d 233 |
. . 3
|
| 41 | nfopab1 3847 |
. . . . . 6
| |
| 42 | 41 | nfel2 2231 |
. . . . 5
|
| 43 | nfs1v 1856 |
. . . . 5
| |
| 44 | 42, 43 | nfbi 1521 |
. . . 4
|
| 45 | opeq1 3570 |
. . . . . 6
| |
| 46 | 45 | eleq1d 2147 |
. . . . 5
|
| 47 | sbequ12 1694 |
. . . . 5
| |
| 48 | 46, 47 | bibi12d 233 |
. . . 4
|
| 49 | nfopab2 3848 |
. . . . . . 7
| |
| 50 | 49 | nfel2 2231 |
. . . . . 6
|
| 51 | nfs1v 1856 |
. . . . . 6
| |
| 52 | 50, 51 | nfbi 1521 |
. . . . 5
|
| 53 | opeq2 3571 |
. . . . . . 7
| |
| 54 | 53 | eleq1d 2147 |
. . . . . 6
|
| 55 | sbequ12 1694 |
. . . . . 6
| |
| 56 | 54, 55 | bibi12d 233 |
. . . . 5
|
| 57 | opabid 4012 |
. . . . 5
| |
| 58 | 52, 56, 57 | chvar 1680 |
. . . 4
|
| 59 | 44, 48, 58 | chvar 1680 |
. . 3
|
| 60 | 35, 40, 59 | vtocl2g 2662 |
. 2
|
| 61 | 25, 31, 60 | pm5.21nii 652 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-opab 3840 |
| This theorem is referenced by: brabsb 4016 opelopabaf 4028 opelopabf 4029 difopab 4487 isarep1 5005 |
| Copyright terms: Public domain | W3C validator |