| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clim | Unicode version | ||
| Description: Express the predicate:
The limit of complex number sequence |
| Ref | Expression |
|---|---|
| clim.1 |
|
| clim.3 |
|
| Ref | Expression |
|---|---|
| clim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climrel 10119 |
. . . . 5
| |
| 2 | 1 | brrelex2i 4403 |
. . . 4
|
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | elex 2610 |
. . . . 5
| |
| 5 | 4 | adantr 270 |
. . . 4
|
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | clim.1 |
. . . 4
| |
| 8 | simpr 108 |
. . . . . . . 8
| |
| 9 | 8 | eleq1d 2147 |
. . . . . . 7
|
| 10 | fveq1 5197 |
. . . . . . . . . . . . 13
| |
| 11 | 10 | adantr 270 |
. . . . . . . . . . . 12
|
| 12 | 11 | eleq1d 2147 |
. . . . . . . . . . 11
|
| 13 | oveq12 5541 |
. . . . . . . . . . . . . 14
| |
| 14 | 10, 13 | sylan 277 |
. . . . . . . . . . . . 13
|
| 15 | 14 | fveq2d 5202 |
. . . . . . . . . . . 12
|
| 16 | 15 | breq1d 3795 |
. . . . . . . . . . 11
|
| 17 | 12, 16 | anbi12d 456 |
. . . . . . . . . 10
|
| 18 | 17 | ralbidv 2368 |
. . . . . . . . 9
|
| 19 | 18 | rexbidv 2369 |
. . . . . . . 8
|
| 20 | 19 | ralbidv 2368 |
. . . . . . 7
|
| 21 | 9, 20 | anbi12d 456 |
. . . . . 6
|
| 22 | df-clim 10118 |
. . . . . 6
| |
| 23 | 21, 22 | brabga 4019 |
. . . . 5
|
| 24 | 23 | ex 113 |
. . . 4
|
| 25 | 7, 24 | syl 14 |
. . 3
|
| 26 | 3, 6, 25 | pm5.21ndd 653 |
. 2
|
| 27 | eluzelz 8628 |
. . . . . . 7
| |
| 28 | clim.3 |
. . . . . . . . 9
| |
| 29 | 28 | eleq1d 2147 |
. . . . . . . 8
|
| 30 | 28 | oveq1d 5547 |
. . . . . . . . . 10
|
| 31 | 30 | fveq2d 5202 |
. . . . . . . . 9
|
| 32 | 31 | breq1d 3795 |
. . . . . . . 8
|
| 33 | 29, 32 | anbi12d 456 |
. . . . . . 7
|
| 34 | 27, 33 | sylan2 280 |
. . . . . 6
|
| 35 | 34 | ralbidva 2364 |
. . . . 5
|
| 36 | 35 | rexbidv 2369 |
. . . 4
|
| 37 | 36 | ralbidv 2368 |
. . 3
|
| 38 | 37 | anbi2d 451 |
. 2
|
| 39 | 26, 38 | bitrd 186 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-cnex 7067 ax-resscn 7068 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-ov 5535 df-neg 7282 df-z 8352 df-uz 8620 df-clim 10118 |
| This theorem is referenced by: climcl 10121 clim2 10122 climshftlemg 10141 |
| Copyright terms: Public domain | W3C validator |