| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climcn1 | Unicode version | ||
| Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climcn1.1 |
|
| climcn1.2 |
|
| climcn1.3 |
|
| climcn1.4 |
|
| climcn1.5 |
|
| climcn1.6 |
|
| climcn1.7 |
|
| climcn1.8 |
|
| climcn1.9 |
|
| Ref | Expression |
|---|---|
| climcn1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcn1.7 |
. . . 4
| |
| 2 | climcn1.1 |
. . . . . . . 8
| |
| 3 | climcn1.2 |
. . . . . . . . 9
| |
| 4 | 3 | adantr 270 |
. . . . . . . 8
|
| 5 | simpr 108 |
. . . . . . . 8
| |
| 6 | eqidd 2082 |
. . . . . . . 8
| |
| 7 | climcn1.5 |
. . . . . . . . 9
| |
| 8 | 7 | adantr 270 |
. . . . . . . 8
|
| 9 | 2, 4, 5, 6, 8 | climi2 10127 |
. . . . . . 7
|
| 10 | 2 | uztrn2 8636 |
. . . . . . . . . . . 12
|
| 11 | climcn1.8 |
. . . . . . . . . . . . . . 15
| |
| 12 | 11 | adantlr 460 |
. . . . . . . . . . . . . 14
|
| 13 | oveq1 5539 |
. . . . . . . . . . . . . . . . . 18
| |
| 14 | 13 | fveq2d 5202 |
. . . . . . . . . . . . . . . . 17
|
| 15 | 14 | breq1d 3795 |
. . . . . . . . . . . . . . . 16
|
| 16 | fveq2 5198 |
. . . . . . . . . . . . . . . . . . 19
| |
| 17 | 16 | oveq1d 5547 |
. . . . . . . . . . . . . . . . . 18
|
| 18 | 17 | fveq2d 5202 |
. . . . . . . . . . . . . . . . 17
|
| 19 | 18 | breq1d 3795 |
. . . . . . . . . . . . . . . 16
|
| 20 | 15, 19 | imbi12d 232 |
. . . . . . . . . . . . . . 15
|
| 21 | 20 | rspcva 2699 |
. . . . . . . . . . . . . 14
|
| 22 | 12, 21 | sylan 277 |
. . . . . . . . . . . . 13
|
| 23 | 22 | an32s 532 |
. . . . . . . . . . . 12
|
| 24 | 10, 23 | sylan2 280 |
. . . . . . . . . . 11
|
| 25 | 24 | anassrs 392 |
. . . . . . . . . 10
|
| 26 | 25 | ralimdva 2429 |
. . . . . . . . 9
|
| 27 | 26 | reximdva 2463 |
. . . . . . . 8
|
| 28 | 27 | ex 113 |
. . . . . . 7
|
| 29 | 9, 28 | mpid 41 |
. . . . . 6
|
| 30 | 29 | rexlimdva 2477 |
. . . . 5
|
| 31 | 30 | adantr 270 |
. . . 4
|
| 32 | 1, 31 | mpd 13 |
. . 3
|
| 33 | 32 | ralrimiva 2434 |
. 2
|
| 34 | climcn1.6 |
. . 3
| |
| 35 | climcn1.9 |
. . 3
| |
| 36 | climcn1.3 |
. . . 4
| |
| 37 | climcn1.4 |
. . . . 5
| |
| 38 | 37 | ralrimiva 2434 |
. . . 4
|
| 39 | fveq2 5198 |
. . . . . 6
| |
| 40 | 39 | eleq1d 2147 |
. . . . 5
|
| 41 | 40 | rspcv 2697 |
. . . 4
|
| 42 | 36, 38, 41 | sylc 61 |
. . 3
|
| 43 | 38 | adantr 270 |
. . . 4
|
| 44 | 16 | eleq1d 2147 |
. . . . 5
|
| 45 | 44 | rspcv 2697 |
. . . 4
|
| 46 | 11, 43, 45 | sylc 61 |
. . 3
|
| 47 | 2, 3, 34, 35, 42, 46 | clim2c 10123 |
. 2
|
| 48 | 33, 47 | mpbird 165 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 df-clim 10118 |
| This theorem is referenced by: climcn1lem 10157 |
| Copyright terms: Public domain | W3C validator |