ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnegexlem2 Unicode version

Theorem cnegexlem2 7284
Description: Existence of a real number which produces a real number when multiplied by  _i. (Hint: zero is such a number, although we don't need to prove that yet). Lemma for cnegex 7286. (Contributed by Eric Schmidt, 22-May-2007.)
Assertion
Ref Expression
cnegexlem2  |-  E. y  e.  RR  ( _i  x.  y )  e.  RR

Proof of Theorem cnegexlem2
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 7111 . 2  |-  0  e.  CC
2 cnre 7115 . 2  |-  ( 0  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  0  =  ( x  +  ( _i  x.  y ) ) )
3 ax-rnegex 7085 . . . . . 6  |-  ( x  e.  RR  ->  E. z  e.  RR  ( x  +  z )  =  0 )
43adantr 270 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  E. z  e.  RR  ( x  +  z
)  =  0 )
5 recn 7106 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  x  e.  CC )
6 ax-icn 7071 . . . . . . . . . . . 12  |-  _i  e.  CC
7 recn 7106 . . . . . . . . . . . 12  |-  ( y  e.  RR  ->  y  e.  CC )
8 mulcl 7100 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  y  e.  CC )  ->  ( _i  x.  y
)  e.  CC )
96, 7, 8sylancr 405 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  (
_i  x.  y )  e.  CC )
10 recn 7106 . . . . . . . . . . 11  |-  ( z  e.  RR  ->  z  e.  CC )
11 addid2 7247 . . . . . . . . . . . . . . 15  |-  ( z  e.  CC  ->  (
0  +  z )  =  z )
12113ad2ant3 961 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  ->  ( 0  +  z )  =  z )
1312adantr 270 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  (
0  +  z )  =  z )
14 oveq1 5539 . . . . . . . . . . . . . . 15  |-  ( ( x  +  z )  =  0  ->  (
( x  +  z )  +  ( _i  x.  y ) )  =  ( 0  +  ( _i  x.  y
) ) )
1514ad2antrl 473 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  (
( x  +  z )  +  ( _i  x.  y ) )  =  ( 0  +  ( _i  x.  y
) ) )
16 add32 7267 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  z  e.  CC  /\  (
_i  x.  y )  e.  CC )  ->  (
( x  +  z )  +  ( _i  x.  y ) )  =  ( ( x  +  ( _i  x.  y ) )  +  z ) )
17163com23 1144 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  ->  ( ( x  +  z )  +  ( _i  x.  y ) )  =  ( ( x  +  ( _i  x.  y ) )  +  z ) )
18 oveq1 5539 . . . . . . . . . . . . . . . . 17  |-  ( 0  =  ( x  +  ( _i  x.  y
) )  ->  (
0  +  z )  =  ( ( x  +  ( _i  x.  y ) )  +  z ) )
1918eqcomd 2086 . . . . . . . . . . . . . . . 16  |-  ( 0  =  ( x  +  ( _i  x.  y
) )  ->  (
( x  +  ( _i  x.  y ) )  +  z )  =  ( 0  +  z ) )
2017, 19sylan9eq 2133 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  0  =  (
x  +  ( _i  x.  y ) ) )  ->  ( (
x  +  z )  +  ( _i  x.  y ) )  =  ( 0  +  z ) )
2120adantrl 461 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  (
( x  +  z )  +  ( _i  x.  y ) )  =  ( 0  +  z ) )
22 addid2 7247 . . . . . . . . . . . . . . . 16  |-  ( ( _i  x.  y )  e.  CC  ->  (
0  +  ( _i  x.  y ) )  =  ( _i  x.  y ) )
23223ad2ant2 960 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  ->  ( 0  +  ( _i  x.  y ) )  =  ( _i  x.  y ) )
2423adantr 270 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  (
0  +  ( _i  x.  y ) )  =  ( _i  x.  y ) )
2515, 21, 243eqtr3d 2121 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  (
0  +  z )  =  ( _i  x.  y ) )
2613, 25eqtr3d 2115 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  z  =  ( _i  x.  y ) )
2726ex 113 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  ->  ( ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) )  ->  z  =  ( _i  x.  y ) ) )
285, 9, 10, 27syl3an 1211 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  z  e.  RR )  ->  (
( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) )  ->  z  =  ( _i  x.  y
) ) )
29283expa 1138 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  z  e.  RR )  ->  ( ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y
) ) )  -> 
z  =  ( _i  x.  y ) ) )
3029imp 122 . . . . . . . 8  |-  ( ( ( ( x  e.  RR  /\  y  e.  RR )  /\  z  e.  RR )  /\  (
( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  z  =  ( _i  x.  y
) )
31 simplr 496 . . . . . . . 8  |-  ( ( ( ( x  e.  RR  /\  y  e.  RR )  /\  z  e.  RR )  /\  (
( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  z  e.  RR )
3230, 31eqeltrrd 2156 . . . . . . 7  |-  ( ( ( ( x  e.  RR  /\  y  e.  RR )  /\  z  e.  RR )  /\  (
( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  ( _i  x.  y )  e.  RR )
3332exp32 357 . . . . . 6  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  z  e.  RR )  ->  ( ( x  +  z )  =  0  ->  ( 0  =  ( x  +  ( _i  x.  y
) )  ->  (
_i  x.  y )  e.  RR ) ) )
3433rexlimdva 2477 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( E. z  e.  RR  ( x  +  z )  =  0  ->  ( 0  =  ( x  +  ( _i  x.  y ) )  ->  ( _i  x.  y )  e.  RR ) ) )
354, 34mpd 13 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( 0  =  ( x  +  ( _i  x.  y ) )  ->  ( _i  x.  y )  e.  RR ) )
3635reximdva 2463 . . 3  |-  ( x  e.  RR  ->  ( E. y  e.  RR  0  =  ( x  +  ( _i  x.  y ) )  ->  E. y  e.  RR  ( _i  x.  y
)  e.  RR ) )
3736rexlimiv 2471 . 2  |-  ( E. x  e.  RR  E. y  e.  RR  0  =  ( x  +  ( _i  x.  y
) )  ->  E. y  e.  RR  ( _i  x.  y )  e.  RR )
381, 2, 37mp2b 8 1  |-  E. y  e.  RR  ( _i  x.  y )  e.  RR
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433   E.wrex 2349  (class class class)co 5532   CCcc 6979   RRcr 6980   0cc0 6981   _ici 6983    + caddc 6984    x. cmul 6986
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-resscn 7068  ax-1cn 7069  ax-icn 7071  ax-addcl 7072  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-iota 4887  df-fv 4930  df-ov 5535
This theorem is referenced by:  cnegex  7286
  Copyright terms: Public domain W3C validator