| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnegexlem3 | Unicode version | ||
| Description: Existence of real number difference. Lemma for cnegex 7286. (Contributed by Eric Schmidt, 22-May-2007.) |
| Ref | Expression |
|---|---|
| cnegexlem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | readdcl 7099 |
. . . . . 6
| |
| 2 | ax-rnegex 7085 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | 3 | adantlr 460 |
. . . 4
|
| 5 | 4 | adantr 270 |
. . 3
|
| 6 | recn 7106 |
. . . . . . . 8
| |
| 7 | recn 7106 |
. . . . . . . 8
| |
| 8 | 6, 7 | anim12i 331 |
. . . . . . 7
|
| 9 | 8 | anim1i 333 |
. . . . . 6
|
| 10 | 9 | anim1i 333 |
. . . . 5
|
| 11 | recn 7106 |
. . . . 5
| |
| 12 | recn 7106 |
. . . . . . . . . 10
| |
| 13 | add32 7267 |
. . . . . . . . . . . 12
| |
| 14 | 13 | 3expa 1138 |
. . . . . . . . . . 11
|
| 15 | addcl 7098 |
. . . . . . . . . . . . 13
| |
| 16 | addcom 7245 |
. . . . . . . . . . . . 13
| |
| 17 | 15, 16 | sylan 277 |
. . . . . . . . . . . 12
|
| 18 | 17 | an32s 532 |
. . . . . . . . . . 11
|
| 19 | 14, 18 | eqtr2d 2114 |
. . . . . . . . . 10
|
| 20 | 12, 19 | sylanl2 395 |
. . . . . . . . 9
|
| 21 | 20 | adantllr 464 |
. . . . . . . 8
|
| 22 | 21 | adantlr 460 |
. . . . . . 7
|
| 23 | addcom 7245 |
. . . . . . . . . . . 12
| |
| 24 | 23 | ancoms 264 |
. . . . . . . . . . 11
|
| 25 | 12, 24 | sylan2 280 |
. . . . . . . . . 10
|
| 26 | id 19 |
. . . . . . . . . 10
| |
| 27 | 25, 26 | sylan9eq 2133 |
. . . . . . . . 9
|
| 28 | 27 | adantlll 463 |
. . . . . . . 8
|
| 29 | 28 | adantr 270 |
. . . . . . 7
|
| 30 | 22, 29 | eqeq12d 2095 |
. . . . . 6
|
| 31 | simplr 496 |
. . . . . . . 8
| |
| 32 | 15 | adantlr 460 |
. . . . . . . . 9
|
| 33 | 32 | adantlr 460 |
. . . . . . . 8
|
| 34 | simpllr 500 |
. . . . . . . 8
| |
| 35 | cnegexlem1 7283 |
. . . . . . . 8
| |
| 36 | 31, 33, 34, 35 | syl3anc 1169 |
. . . . . . 7
|
| 37 | 36 | adantlr 460 |
. . . . . 6
|
| 38 | 30, 37 | bitr3d 188 |
. . . . 5
|
| 39 | 10, 11, 38 | syl2an 283 |
. . . 4
|
| 40 | 39 | rexbidva 2365 |
. . 3
|
| 41 | 5, 40 | mpbid 145 |
. 2
|
| 42 | ax-rnegex 7085 |
. . 3
| |
| 43 | 42 | adantl 271 |
. 2
|
| 44 | 41, 43 | r19.29a 2498 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-resscn 7068 ax-1cn 7069 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-i2m1 7081 ax-0id 7084 ax-rnegex 7085 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 |
| This theorem is referenced by: cnegex 7286 |
| Copyright terms: Public domain | W3C validator |