ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvin Unicode version

Theorem cnvin 4751
Description: Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
cnvin  |-  `' ( A  i^i  B )  =  ( `' A  i^i  `' B )

Proof of Theorem cnvin
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 4371 . . 3  |-  `' ( A  i^i  B )  =  { <. x ,  y >.  |  y ( A  i^i  B
) x }
2 inopab 4486 . . . 4  |-  ( {
<. x ,  y >.  |  y A x }  i^i  { <. x ,  y >.  |  y B x } )  =  { <. x ,  y >.  |  ( y A x  /\  y B x ) }
3 brin 3832 . . . . 5  |-  ( y ( A  i^i  B
) x  <->  ( y A x  /\  y B x ) )
43opabbii 3845 . . . 4  |-  { <. x ,  y >.  |  y ( A  i^i  B
) x }  =  { <. x ,  y
>.  |  ( y A x  /\  y B x ) }
52, 4eqtr4i 2104 . . 3  |-  ( {
<. x ,  y >.  |  y A x }  i^i  { <. x ,  y >.  |  y B x } )  =  { <. x ,  y >.  |  y ( A  i^i  B
) x }
61, 5eqtr4i 2104 . 2  |-  `' ( A  i^i  B )  =  ( { <. x ,  y >.  |  y A x }  i^i  {
<. x ,  y >.  |  y B x } )
7 df-cnv 4371 . . 3  |-  `' A  =  { <. x ,  y
>.  |  y A x }
8 df-cnv 4371 . . 3  |-  `' B  =  { <. x ,  y
>.  |  y B x }
97, 8ineq12i 3165 . 2  |-  ( `' A  i^i  `' B
)  =  ( {
<. x ,  y >.  |  y A x }  i^i  { <. x ,  y >.  |  y B x } )
106, 9eqtr4i 2104 1  |-  `' ( A  i^i  B )  =  ( `' A  i^i  `' B )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1284    i^i cin 2972   class class class wbr 3785   {copab 3838   `'ccnv 4362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371
This theorem is referenced by:  rnin  4753  dminxp  4785  imainrect  4786  cnvcnv  4793
  Copyright terms: Public domain W3C validator