| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cocan2 | Unicode version | ||
| Description: A surjection is right-cancelable. (Contributed by FL, 21-Nov-2011.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| cocan2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 5126 |
. . . . . . 7
| |
| 2 | 1 | 3ad2ant1 959 |
. . . . . 6
|
| 3 | fvco3 5265 |
. . . . . 6
| |
| 4 | 2, 3 | sylan 277 |
. . . . 5
|
| 5 | fvco3 5265 |
. . . . . 6
| |
| 6 | 2, 5 | sylan 277 |
. . . . 5
|
| 7 | 4, 6 | eqeq12d 2095 |
. . . 4
|
| 8 | 7 | ralbidva 2364 |
. . 3
|
| 9 | fveq2 5198 |
. . . . . 6
| |
| 10 | fveq2 5198 |
. . . . . 6
| |
| 11 | 9, 10 | eqeq12d 2095 |
. . . . 5
|
| 12 | 11 | cbvfo 5445 |
. . . 4
|
| 13 | 12 | 3ad2ant1 959 |
. . 3
|
| 14 | 8, 13 | bitrd 186 |
. 2
|
| 15 | simp2 939 |
. . . 4
| |
| 16 | fnfco 5085 |
. . . 4
| |
| 17 | 15, 2, 16 | syl2anc 403 |
. . 3
|
| 18 | simp3 940 |
. . . 4
| |
| 19 | fnfco 5085 |
. . . 4
| |
| 20 | 18, 2, 19 | syl2anc 403 |
. . 3
|
| 21 | eqfnfv 5286 |
. . 3
| |
| 22 | 17, 20, 21 | syl2anc 403 |
. 2
|
| 23 | eqfnfv 5286 |
. . 3
| |
| 24 | 15, 18, 23 | syl2anc 403 |
. 2
|
| 25 | 14, 22, 24 | 3bitr4d 218 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-csb 2909 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fo 4928 df-fv 4930 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |