ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiegf Unicode version

Theorem csbiegf 2946
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbiegf.1  |-  ( A  e.  V  ->  F/_ x C )
csbiegf.2  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
csbiegf  |-  ( A  e.  V  ->  [_ A  /  x ]_ B  =  C )
Distinct variable groups:    x, A    x, V
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem csbiegf
StepHypRef Expression
1 csbiegf.2 . . 3  |-  ( x  =  A  ->  B  =  C )
21ax-gen 1378 . 2  |-  A. x
( x  =  A  ->  B  =  C )
3 csbiegf.1 . . 3  |-  ( A  e.  V  ->  F/_ x C )
4 csbiebt 2942 . . 3  |-  ( ( A  e.  V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
53, 4mpdan 412 . 2  |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C ) )
62, 5mpbii 146 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1282    = wceq 1284    e. wcel 1433   F/_wnfc 2206   [_csb 2908
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sbc 2816  df-csb 2909
This theorem is referenced by:  csbief  2947  sbcco3g  2959  csbco3g  2960  fmptcof  5352  fmpt2co  5857
  Copyright terms: Public domain W3C validator