| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbiebt | Unicode version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 2946.) (Contributed by NM, 11-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbiebt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2610 |
. 2
| |
| 2 | spsbc 2826 |
. . . . 5
| |
| 3 | 2 | adantr 270 |
. . . 4
|
| 4 | simpl 107 |
. . . . 5
| |
| 5 | biimt 239 |
. . . . . . 7
| |
| 6 | csbeq1a 2916 |
. . . . . . . 8
| |
| 7 | 6 | eqeq1d 2089 |
. . . . . . 7
|
| 8 | 5, 7 | bitr3d 188 |
. . . . . 6
|
| 9 | 8 | adantl 271 |
. . . . 5
|
| 10 | nfv 1461 |
. . . . . 6
| |
| 11 | nfnfc1 2222 |
. . . . . 6
| |
| 12 | 10, 11 | nfan 1497 |
. . . . 5
|
| 13 | nfcsb1v 2938 |
. . . . . . 7
| |
| 14 | 13 | a1i 9 |
. . . . . 6
|
| 15 | simpr 108 |
. . . . . 6
| |
| 16 | 14, 15 | nfeqd 2233 |
. . . . 5
|
| 17 | 4, 9, 12, 16 | sbciedf 2849 |
. . . 4
|
| 18 | 3, 17 | sylibd 147 |
. . 3
|
| 19 | 13 | a1i 9 |
. . . . . . . 8
|
| 20 | id 19 |
. . . . . . . 8
| |
| 21 | 19, 20 | nfeqd 2233 |
. . . . . . 7
|
| 22 | 11, 21 | nfan1 1496 |
. . . . . 6
|
| 23 | 7 | biimprcd 158 |
. . . . . . 7
|
| 24 | 23 | adantl 271 |
. . . . . 6
|
| 25 | 22, 24 | alrimi 1455 |
. . . . 5
|
| 26 | 25 | ex 113 |
. . . 4
|
| 27 | 26 | adantl 271 |
. . 3
|
| 28 | 18, 27 | impbid 127 |
. 2
|
| 29 | 1, 28 | sylan 277 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-sbc 2816 df-csb 2909 |
| This theorem is referenced by: csbiedf 2943 csbieb 2944 csbiegf 2946 |
| Copyright terms: Public domain | W3C validator |