ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiebt Unicode version

Theorem csbiebt 2942
Description: Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 2946.) (Contributed by NM, 11-Nov-2005.)
Assertion
Ref Expression
csbiebt  |-  ( ( A  e.  V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem csbiebt
StepHypRef Expression
1 elex 2610 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 spsbc 2826 . . . . 5  |-  ( A  e.  _V  ->  ( A. x ( x  =  A  ->  B  =  C )  ->  [. A  /  x ]. ( x  =  A  ->  B  =  C ) ) )
32adantr 270 . . . 4  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  ->  [. A  /  x ]. ( x  =  A  ->  B  =  C ) ) )
4 simpl 107 . . . . 5  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  A  e.  _V )
5 biimt 239 . . . . . . 7  |-  ( x  =  A  ->  ( B  =  C  <->  ( x  =  A  ->  B  =  C ) ) )
6 csbeq1a 2916 . . . . . . . 8  |-  ( x  =  A  ->  B  =  [_ A  /  x ]_ B )
76eqeq1d 2089 . . . . . . 7  |-  ( x  =  A  ->  ( B  =  C  <->  [_ A  /  x ]_ B  =  C ) )
85, 7bitr3d 188 . . . . . 6  |-  ( x  =  A  ->  (
( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C
) )
98adantl 271 . . . . 5  |-  ( ( ( A  e.  _V  /\ 
F/_ x C )  /\  x  =  A )  ->  ( (
x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
10 nfv 1461 . . . . . 6  |-  F/ x  A  e.  _V
11 nfnfc1 2222 . . . . . 6  |-  F/ x F/_ x C
1210, 11nfan 1497 . . . . 5  |-  F/ x
( A  e.  _V  /\ 
F/_ x C )
13 nfcsb1v 2938 . . . . . . 7  |-  F/_ x [_ A  /  x ]_ B
1413a1i 9 . . . . . 6  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  F/_ x [_ A  /  x ]_ B )
15 simpr 108 . . . . . 6  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  F/_ x C )
1614, 15nfeqd 2233 . . . . 5  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  F/ x [_ A  /  x ]_ B  =  C )
174, 9, 12, 16sbciedf 2849 . . . 4  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( [. A  /  x ]. ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C
) )
183, 17sylibd 147 . . 3  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  ->  [_ A  /  x ]_ B  =  C
) )
1913a1i 9 . . . . . . . 8  |-  ( F/_ x C  ->  F/_ x [_ A  /  x ]_ B )
20 id 19 . . . . . . . 8  |-  ( F/_ x C  ->  F/_ x C )
2119, 20nfeqd 2233 . . . . . . 7  |-  ( F/_ x C  ->  F/ x [_ A  /  x ]_ B  =  C
)
2211, 21nfan1 1496 . . . . . 6  |-  F/ x
( F/_ x C  /\  [_ A  /  x ]_ B  =  C )
237biimprcd 158 . . . . . . 7  |-  ( [_ A  /  x ]_ B  =  C  ->  ( x  =  A  ->  B  =  C ) )
2423adantl 271 . . . . . 6  |-  ( (
F/_ x C  /\  [_ A  /  x ]_ B  =  C )  ->  ( x  =  A  ->  B  =  C ) )
2522, 24alrimi 1455 . . . . 5  |-  ( (
F/_ x C  /\  [_ A  /  x ]_ B  =  C )  ->  A. x ( x  =  A  ->  B  =  C ) )
2625ex 113 . . . 4  |-  ( F/_ x C  ->  ( [_ A  /  x ]_ B  =  C  ->  A. x
( x  =  A  ->  B  =  C ) ) )
2726adantl 271 . . 3  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( [_ A  /  x ]_ B  =  C  ->  A. x ( x  =  A  ->  B  =  C ) ) )
2818, 27impbid 127 . 2  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
291, 28sylan 277 1  |-  ( ( A  e.  V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1282    = wceq 1284    e. wcel 1433   F/_wnfc 2206   _Vcvv 2601   [.wsbc 2815   [_csb 2908
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sbc 2816  df-csb 2909
This theorem is referenced by:  csbiedf  2943  csbieb  2944  csbiegf  2946
  Copyright terms: Public domain W3C validator