ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpt2co Unicode version

Theorem fmpt2co 5857
Description: Composition of two functions. Variation of fmptco 5351 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
fmpt2co.1  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  R  e.  C )
fmpt2co.2  |-  ( ph  ->  F  =  ( x  e.  A ,  y  e.  B  |->  R ) )
fmpt2co.3  |-  ( ph  ->  G  =  ( z  e.  C  |->  S ) )
fmpt2co.4  |-  ( z  =  R  ->  S  =  T )
Assertion
Ref Expression
fmpt2co  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A ,  y  e.  B  |->  T ) )
Distinct variable groups:    x, y, B   
x, z, C, y    ph, x, y    x, S, y    x, A, y   
z, R    z, T
Allowed substitution hints:    ph( z)    A( z)    B( z)    R( x, y)    S( z)    T( x, y)    F( x, y, z)    G( x, y, z)

Proof of Theorem fmpt2co
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmpt2co.1 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  R  e.  C )
21ralrimivva 2443 . . . . 5  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  R  e.  C )
3 eqid 2081 . . . . . 6  |-  ( x  e.  A ,  y  e.  B  |->  R )  =  ( x  e.  A ,  y  e.  B  |->  R )
43fmpt2 5847 . . . . 5  |-  ( A. x  e.  A  A. y  e.  B  R  e.  C  <->  ( x  e.  A ,  y  e.  B  |->  R ) : ( A  X.  B
) --> C )
52, 4sylib 120 . . . 4  |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  R ) : ( A  X.  B ) --> C )
6 nfcv 2219 . . . . . . 7  |-  F/_ u R
7 nfcv 2219 . . . . . . 7  |-  F/_ v R
8 nfcv 2219 . . . . . . . 8  |-  F/_ x
v
9 nfcsb1v 2938 . . . . . . . 8  |-  F/_ x [_ u  /  x ]_ R
108, 9nfcsb 2940 . . . . . . 7  |-  F/_ x [_ v  /  y ]_ [_ u  /  x ]_ R
11 nfcsb1v 2938 . . . . . . 7  |-  F/_ y [_ v  /  y ]_ [_ u  /  x ]_ R
12 csbeq1a 2916 . . . . . . . 8  |-  ( x  =  u  ->  R  =  [_ u  /  x ]_ R )
13 csbeq1a 2916 . . . . . . . 8  |-  ( y  =  v  ->  [_ u  /  x ]_ R  = 
[_ v  /  y ]_ [_ u  /  x ]_ R )
1412, 13sylan9eq 2133 . . . . . . 7  |-  ( ( x  =  u  /\  y  =  v )  ->  R  =  [_ v  /  y ]_ [_ u  /  x ]_ R )
156, 7, 10, 11, 14cbvmpt2 5603 . . . . . 6  |-  ( x  e.  A ,  y  e.  B  |->  R )  =  ( u  e.  A ,  v  e.  B  |->  [_ v  /  y ]_ [_ u  /  x ]_ R )
16 vex 2604 . . . . . . . . . 10  |-  u  e. 
_V
17 vex 2604 . . . . . . . . . 10  |-  v  e. 
_V
1816, 17op2ndd 5796 . . . . . . . . 9  |-  ( w  =  <. u ,  v
>.  ->  ( 2nd `  w
)  =  v )
1918csbeq1d 2914 . . . . . . . 8  |-  ( w  =  <. u ,  v
>.  ->  [_ ( 2nd `  w
)  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  =  [_ v  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R )
2016, 17op1std 5795 . . . . . . . . . 10  |-  ( w  =  <. u ,  v
>.  ->  ( 1st `  w
)  =  u )
2120csbeq1d 2914 . . . . . . . . 9  |-  ( w  =  <. u ,  v
>.  ->  [_ ( 1st `  w
)  /  x ]_ R  =  [_ u  /  x ]_ R )
2221csbeq2dv 2931 . . . . . . . 8  |-  ( w  =  <. u ,  v
>.  ->  [_ v  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  =  [_ v  / 
y ]_ [_ u  /  x ]_ R )
2319, 22eqtrd 2113 . . . . . . 7  |-  ( w  =  <. u ,  v
>.  ->  [_ ( 2nd `  w
)  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  =  [_ v  / 
y ]_ [_ u  /  x ]_ R )
2423mpt2mpt 5616 . . . . . 6  |-  ( w  e.  ( A  X.  B )  |->  [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R )  =  ( u  e.  A , 
v  e.  B  |->  [_ v  /  y ]_ [_ u  /  x ]_ R )
2515, 24eqtr4i 2104 . . . . 5  |-  ( x  e.  A ,  y  e.  B  |->  R )  =  ( w  e.  ( A  X.  B
)  |->  [_ ( 2nd `  w
)  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R )
2625fmpt 5340 . . . 4  |-  ( A. w  e.  ( A  X.  B ) [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R  e.  C  <->  ( x  e.  A , 
y  e.  B  |->  R ) : ( A  X.  B ) --> C )
275, 26sylibr 132 . . 3  |-  ( ph  ->  A. w  e.  ( A  X.  B )
[_ ( 2nd `  w
)  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  e.  C )
28 fmpt2co.2 . . . 4  |-  ( ph  ->  F  =  ( x  e.  A ,  y  e.  B  |->  R ) )
2928, 25syl6eq 2129 . . 3  |-  ( ph  ->  F  =  ( w  e.  ( A  X.  B )  |->  [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R ) )
30 fmpt2co.3 . . 3  |-  ( ph  ->  G  =  ( z  e.  C  |->  S ) )
3127, 29, 30fmptcos 5353 . 2  |-  ( ph  ->  ( G  o.  F
)  =  ( w  e.  ( A  X.  B )  |->  [_ [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R  /  z ]_ S ) )
3223csbeq1d 2914 . . . . 5  |-  ( w  =  <. u ,  v
>.  ->  [_ [_ ( 2nd `  w )  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  /  z ]_ S  =  [_ [_ v  / 
y ]_ [_ u  /  x ]_ R  /  z ]_ S )
3332mpt2mpt 5616 . . . 4  |-  ( w  e.  ( A  X.  B )  |->  [_ [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R  /  z ]_ S )  =  ( u  e.  A , 
v  e.  B  |->  [_ [_ v  /  y ]_ [_ u  /  x ]_ R  /  z ]_ S
)
34 nfcv 2219 . . . . 5  |-  F/_ u [_ R  /  z ]_ S
35 nfcv 2219 . . . . 5  |-  F/_ v [_ R  /  z ]_ S
36 nfcv 2219 . . . . . 6  |-  F/_ x S
3710, 36nfcsb 2940 . . . . 5  |-  F/_ x [_ [_ v  /  y ]_ [_ u  /  x ]_ R  /  z ]_ S
38 nfcv 2219 . . . . . 6  |-  F/_ y S
3911, 38nfcsb 2940 . . . . 5  |-  F/_ y [_ [_ v  /  y ]_ [_ u  /  x ]_ R  /  z ]_ S
4014csbeq1d 2914 . . . . 5  |-  ( ( x  =  u  /\  y  =  v )  ->  [_ R  /  z ]_ S  =  [_ [_ v  /  y ]_ [_ u  /  x ]_ R  / 
z ]_ S )
4134, 35, 37, 39, 40cbvmpt2 5603 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  [_ R  /  z ]_ S
)  =  ( u  e.  A ,  v  e.  B  |->  [_ [_ v  /  y ]_ [_ u  /  x ]_ R  / 
z ]_ S )
4233, 41eqtr4i 2104 . . 3  |-  ( w  e.  ( A  X.  B )  |->  [_ [_ ( 2nd `  w )  / 
y ]_ [_ ( 1st `  w )  /  x ]_ R  /  z ]_ S )  =  ( x  e.  A , 
y  e.  B  |->  [_ R  /  z ]_ S
)
4313impb 1134 . . . . 5  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  R  e.  C )
44 nfcvd 2220 . . . . . 6  |-  ( R  e.  C  ->  F/_ z T )
45 fmpt2co.4 . . . . . 6  |-  ( z  =  R  ->  S  =  T )
4644, 45csbiegf 2946 . . . . 5  |-  ( R  e.  C  ->  [_ R  /  z ]_ S  =  T )
4743, 46syl 14 . . . 4  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  [_ R  / 
z ]_ S  =  T )
4847mpt2eq3dva 5589 . . 3  |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |-> 
[_ R  /  z ]_ S )  =  ( x  e.  A , 
y  e.  B  |->  T ) )
4942, 48syl5eq 2125 . 2  |-  ( ph  ->  ( w  e.  ( A  X.  B ) 
|->  [_ [_ ( 2nd `  w )  /  y ]_ [_ ( 1st `  w
)  /  x ]_ R  /  z ]_ S
)  =  ( x  e.  A ,  y  e.  B  |->  T ) )
5031, 49eqtrd 2113 1  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A ,  y  e.  B  |->  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433   A.wral 2348   [_csb 2908   <.cop 3401    |-> cmpt 3839    X. cxp 4361    o. ccom 4367   -->wf 4918   ` cfv 4922    |-> cmpt2 5534   1stc1st 5785   2ndc2nd 5786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788
This theorem is referenced by:  oprabco  5858
  Copyright terms: Public domain W3C validator