| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmpt2co | Unicode version | ||
| Description: Composition of two functions. Variation of fmptco 5351 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| fmpt2co.1 |
|
| fmpt2co.2 |
|
| fmpt2co.3 |
|
| fmpt2co.4 |
|
| Ref | Expression |
|---|---|
| fmpt2co |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpt2co.1 |
. . . . . 6
| |
| 2 | 1 | ralrimivva 2443 |
. . . . 5
|
| 3 | eqid 2081 |
. . . . . 6
| |
| 4 | 3 | fmpt2 5847 |
. . . . 5
|
| 5 | 2, 4 | sylib 120 |
. . . 4
|
| 6 | nfcv 2219 |
. . . . . . 7
| |
| 7 | nfcv 2219 |
. . . . . . 7
| |
| 8 | nfcv 2219 |
. . . . . . . 8
| |
| 9 | nfcsb1v 2938 |
. . . . . . . 8
| |
| 10 | 8, 9 | nfcsb 2940 |
. . . . . . 7
|
| 11 | nfcsb1v 2938 |
. . . . . . 7
| |
| 12 | csbeq1a 2916 |
. . . . . . . 8
| |
| 13 | csbeq1a 2916 |
. . . . . . . 8
| |
| 14 | 12, 13 | sylan9eq 2133 |
. . . . . . 7
|
| 15 | 6, 7, 10, 11, 14 | cbvmpt2 5603 |
. . . . . 6
|
| 16 | vex 2604 |
. . . . . . . . . 10
| |
| 17 | vex 2604 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | op2ndd 5796 |
. . . . . . . . 9
|
| 19 | 18 | csbeq1d 2914 |
. . . . . . . 8
|
| 20 | 16, 17 | op1std 5795 |
. . . . . . . . . 10
|
| 21 | 20 | csbeq1d 2914 |
. . . . . . . . 9
|
| 22 | 21 | csbeq2dv 2931 |
. . . . . . . 8
|
| 23 | 19, 22 | eqtrd 2113 |
. . . . . . 7
|
| 24 | 23 | mpt2mpt 5616 |
. . . . . 6
|
| 25 | 15, 24 | eqtr4i 2104 |
. . . . 5
|
| 26 | 25 | fmpt 5340 |
. . . 4
|
| 27 | 5, 26 | sylibr 132 |
. . 3
|
| 28 | fmpt2co.2 |
. . . 4
| |
| 29 | 28, 25 | syl6eq 2129 |
. . 3
|
| 30 | fmpt2co.3 |
. . 3
| |
| 31 | 27, 29, 30 | fmptcos 5353 |
. 2
|
| 32 | 23 | csbeq1d 2914 |
. . . . 5
|
| 33 | 32 | mpt2mpt 5616 |
. . . 4
|
| 34 | nfcv 2219 |
. . . . 5
| |
| 35 | nfcv 2219 |
. . . . 5
| |
| 36 | nfcv 2219 |
. . . . . 6
| |
| 37 | 10, 36 | nfcsb 2940 |
. . . . 5
|
| 38 | nfcv 2219 |
. . . . . 6
| |
| 39 | 11, 38 | nfcsb 2940 |
. . . . 5
|
| 40 | 14 | csbeq1d 2914 |
. . . . 5
|
| 41 | 34, 35, 37, 39, 40 | cbvmpt2 5603 |
. . . 4
|
| 42 | 33, 41 | eqtr4i 2104 |
. . 3
|
| 43 | 1 | 3impb 1134 |
. . . . 5
|
| 44 | nfcvd 2220 |
. . . . . 6
| |
| 45 | fmpt2co.4 |
. . . . . 6
| |
| 46 | 44, 45 | csbiegf 2946 |
. . . . 5
|
| 47 | 43, 46 | syl 14 |
. . . 4
|
| 48 | 47 | mpt2eq3dva 5589 |
. . 3
|
| 49 | 42, 48 | syl5eq 2125 |
. 2
|
| 50 | 31, 49 | eqtrd 2113 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 |
| This theorem is referenced by: oprabco 5858 |
| Copyright terms: Public domain | W3C validator |