| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbxpg | Unicode version | ||
| Description: Distribute proper substitution through the cross product of two classes. (Contributed by Alan Sare, 10-Nov-2012.) |
| Ref | Expression |
|---|---|
| csbxpg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbabg 2963 |
. . 3
| |
| 2 | sbcexg 2868 |
. . . . 5
| |
| 3 | sbcexg 2868 |
. . . . . . 7
| |
| 4 | sbcang 2857 |
. . . . . . . . 9
| |
| 5 | sbcg 2883 |
. . . . . . . . . 10
| |
| 6 | sbcang 2857 |
. . . . . . . . . . 11
| |
| 7 | sbcel2g 2927 |
. . . . . . . . . . . 12
| |
| 8 | sbcel2g 2927 |
. . . . . . . . . . . 12
| |
| 9 | 7, 8 | anbi12d 456 |
. . . . . . . . . . 11
|
| 10 | 6, 9 | bitrd 186 |
. . . . . . . . . 10
|
| 11 | 5, 10 | anbi12d 456 |
. . . . . . . . 9
|
| 12 | 4, 11 | bitrd 186 |
. . . . . . . 8
|
| 13 | 12 | exbidv 1746 |
. . . . . . 7
|
| 14 | 3, 13 | bitrd 186 |
. . . . . 6
|
| 15 | 14 | exbidv 1746 |
. . . . 5
|
| 16 | 2, 15 | bitrd 186 |
. . . 4
|
| 17 | 16 | abbidv 2196 |
. . 3
|
| 18 | 1, 17 | eqtrd 2113 |
. 2
|
| 19 | df-xp 4369 |
. . . 4
| |
| 20 | df-opab 3840 |
. . . 4
| |
| 21 | 19, 20 | eqtri 2101 |
. . 3
|
| 22 | 21 | csbeq2i 2932 |
. 2
|
| 23 | df-xp 4369 |
. . 3
| |
| 24 | df-opab 3840 |
. . 3
| |
| 25 | 23, 24 | eqtri 2101 |
. 2
|
| 26 | 18, 22, 25 | 3eqtr4g 2138 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-sbc 2816 df-csb 2909 df-opab 3840 df-xp 4369 |
| This theorem is referenced by: csbresg 4633 |
| Copyright terms: Public domain | W3C validator |