ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0xp Unicode version

Theorem 0xp 4438
Description: The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
0xp  |-  ( (/)  X.  A )  =  (/)

Proof of Theorem 0xp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4380 . . 3  |-  ( z  e.  ( (/)  X.  A
)  <->  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  (/)  /\  y  e.  A ) ) )
2 noel 3255 . . . . . . 7  |-  -.  x  e.  (/)
3 simprl 497 . . . . . . 7  |-  ( ( z  =  <. x ,  y >.  /\  (
x  e.  (/)  /\  y  e.  A ) )  ->  x  e.  (/) )
42, 3mto 620 . . . . . 6  |-  -.  (
z  =  <. x ,  y >.  /\  (
x  e.  (/)  /\  y  e.  A ) )
54nex 1429 . . . . 5  |-  -.  E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  (/)  /\  y  e.  A ) )
65nex 1429 . . . 4  |-  -.  E. x E. y ( z  =  <. x ,  y
>.  /\  ( x  e.  (/)  /\  y  e.  A
) )
7 noel 3255 . . . 4  |-  -.  z  e.  (/)
86, 72false 649 . . 3  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  (
x  e.  (/)  /\  y  e.  A ) )  <->  z  e.  (/) )
91, 8bitri 182 . 2  |-  ( z  e.  ( (/)  X.  A
)  <->  z  e.  (/) )
109eqriv 2078 1  |-  ( (/)  X.  A )  =  (/)
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1284   E.wex 1421    e. wcel 1433   (/)c0 3251   <.cop 3401    X. cxp 4361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840  df-xp 4369
This theorem is referenced by:  res0  4634  xp0  4763  xpeq0r  4766  xpdisj1  4767  xpima1  4787
  Copyright terms: Public domain W3C validator