| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcbid | Unicode version | ||
| Description: The equivalent of a decidable proposition is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.) |
| Ref | Expression |
|---|---|
| dcbid.1 |
|
| Ref | Expression |
|---|---|
| dcbid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcbid.1 |
. . 3
| |
| 2 | 1 | notbid 624 |
. . 3
|
| 3 | 1, 2 | orbi12d 739 |
. 2
|
| 4 | df-dc 776 |
. 2
| |
| 5 | df-dc 776 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4g 221 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 |
| This theorem depends on definitions: df-bi 115 df-dc 776 |
| This theorem is referenced by: ltdcpi 6513 enqdc 6551 enqdc1 6552 ltdcnq 6587 exfzdc 9249 dvdsdc 10203 zdvdsdc 10216 zsupcllemstep 10341 infssuzex 10345 |
| Copyright terms: Public domain | W3C validator |