ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcllemstep Unicode version

Theorem zsupcllemstep 10341
Description: Lemma for zsupcl 10343. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypothesis
Ref Expression
zsupcllemstep.dc  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
Assertion
Ref Expression
zsupcllemstep  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  ->  ( ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
Distinct variable groups:    n, K, x, y, z    n, M, y    ph, n, y    ps, x, y, z
Allowed substitution hints:    ph( x, z)    ps( n)    M( x, z)

Proof of Theorem zsupcllemstep
StepHypRef Expression
1 eluzelz 8628 . . . . 5  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
21ad3antrrr 475 . . . 4  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  K  e.  ZZ )
3 nfv 1461 . . . . . . . 8  |-  F/ y  K  e.  ( ZZ>= `  M )
4 nfv 1461 . . . . . . . . 9  |-  F/ y ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )
5 nfcv 2219 . . . . . . . . . 10  |-  F/_ y ZZ
6 nfra1 2397 . . . . . . . . . . 11  |-  F/ y A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y
7 nfra1 2397 . . . . . . . . . . 11  |-  F/ y A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
n  e.  ZZ  |  ps } y  <  z
)
86, 7nfan 1497 . . . . . . . . . 10  |-  F/ y ( A. y  e. 
{ n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) )
95, 8nfrexya 2405 . . . . . . . . 9  |-  F/ y E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) )
104, 9nfim 1504 . . . . . . . 8  |-  F/ y ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
113, 10nfan 1497 . . . . . . 7  |-  F/ y ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
12 nfv 1461 . . . . . . 7  |-  F/ y ( ph  /\  A. n  e.  ( ZZ>= `  ( K  +  1
) )  -.  ps )
1311, 12nfan 1497 . . . . . 6  |-  F/ y ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )
14 nfv 1461 . . . . . 6  |-  F/ y
[. K  /  n ]. ps
1513, 14nfan 1497 . . . . 5  |-  F/ y ( ( ( K  e.  ( ZZ>= `  M
)  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )
16 nfcv 2219 . . . . . . . . . . 11  |-  F/_ n ZZ
1716elrabsf 2852 . . . . . . . . . 10  |-  ( y  e.  { n  e.  ZZ  |  ps }  <->  ( y  e.  ZZ  /\  [. y  /  n ]. ps ) )
1817simprbi 269 . . . . . . . . 9  |-  ( y  e.  { n  e.  ZZ  |  ps }  ->  [. y  /  n ]. ps )
19 sbsbc 2819 . . . . . . . . 9  |-  ( [ y  /  n ] ps 
<-> 
[. y  /  n ]. ps )
2018, 19sylibr 132 . . . . . . . 8  |-  ( y  e.  { n  e.  ZZ  |  ps }  ->  [ y  /  n ] ps )
2120ad2antlr 472 . . . . . . 7  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  /\  K  <  y )  ->  [ y  /  n ] ps )
22 elrabi 2746 . . . . . . . . . . 11  |-  ( y  e.  { n  e.  ZZ  |  ps }  ->  y  e.  ZZ )
23 zltp1le 8405 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  y  e.  ZZ )  ->  ( K  <  y  <->  ( K  +  1 )  <_  y ) )
242, 22, 23syl2an 283 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  M
)  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  -> 
( K  <  y  <->  ( K  +  1 )  <_  y ) )
2524biimpa 290 . . . . . . . . 9  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  /\  K  <  y )  -> 
( K  +  1 )  <_  y )
262peano2zd 8472 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  ( K  +  1 )  e.  ZZ )
27 eluz 8632 . . . . . . . . . . 11  |-  ( ( ( K  +  1 )  e.  ZZ  /\  y  e.  ZZ )  ->  ( y  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_ 
y ) )
2826, 22, 27syl2an 283 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  M
)  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  -> 
( y  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_ 
y ) )
2928adantr 270 . . . . . . . . 9  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  /\  K  <  y )  -> 
( y  e.  (
ZZ>= `  ( K  + 
1 ) )  <->  ( K  +  1 )  <_ 
y ) )
3025, 29mpbird 165 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  /\  K  <  y )  -> 
y  e.  ( ZZ>= `  ( K  +  1
) ) )
31 simprr 498 . . . . . . . . 9  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  ->  A. n  e.  ( ZZ>=
`  ( K  + 
1 ) )  -. 
ps )
3231ad3antrrr 475 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  /\  K  <  y )  ->  A. n  e.  ( ZZ>=
`  ( K  + 
1 ) )  -. 
ps )
33 nfs1v 1856 . . . . . . . . . 10  |-  F/ n [ y  /  n ] ps
3433nfn 1588 . . . . . . . . 9  |-  F/ n  -.  [ y  /  n ] ps
35 sbequ12 1694 . . . . . . . . . 10  |-  ( n  =  y  ->  ( ps 
<->  [ y  /  n ] ps ) )
3635notbid 624 . . . . . . . . 9  |-  ( n  =  y  ->  ( -.  ps  <->  -.  [ y  /  n ] ps )
)
3734, 36rspc 2695 . . . . . . . 8  |-  ( y  e.  ( ZZ>= `  ( K  +  1 ) )  ->  ( A. n  e.  ( ZZ>= `  ( K  +  1
) )  -.  ps  ->  -.  [ y  /  n ] ps ) )
3830, 32, 37sylc 61 . . . . . . 7  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  /\  K  <  y )  ->  -.  [ y  /  n ] ps )
3921, 38pm2.65da 619 . . . . . 6  |-  ( ( ( ( ( K  e.  ( ZZ>= `  M
)  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  { n  e.  ZZ  |  ps } )  ->  -.  K  <  y )
4039ex 113 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  ( y  e.  { n  e.  ZZ  |  ps }  ->  -.  K  <  y
) )
4115, 40ralrimi 2432 . . . 4  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  A. y  e.  { n  e.  ZZ  |  ps }  -.  K  <  y )
422ad2antrr 471 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  RR )  /\  y  <  K )  ->  K  e.  ZZ )
43 simpllr 500 . . . . . . . 8  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  RR )  /\  y  <  K )  ->  [. K  /  n ]. ps )
4416elrabsf 2852 . . . . . . . 8  |-  ( K  e.  { n  e.  ZZ  |  ps }  <->  ( K  e.  ZZ  /\  [. K  /  n ]. ps ) )
4542, 43, 44sylanbrc 408 . . . . . . 7  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  RR )  /\  y  <  K )  ->  K  e.  { n  e.  ZZ  |  ps } )
46 breq2 3789 . . . . . . . 8  |-  ( z  =  K  ->  (
y  <  z  <->  y  <  K ) )
4746rspcev 2701 . . . . . . 7  |-  ( ( K  e.  { n  e.  ZZ  |  ps }  /\  y  <  K )  ->  E. z  e.  {
n  e.  ZZ  |  ps } y  <  z
)
4845, 47sylancom 411 . . . . . 6  |-  ( ( ( ( ( ( K  e.  ( ZZ>= `  M )  /\  (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  /\  y  e.  RR )  /\  y  <  K )  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z )
4948exp31 356 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  ( y  e.  RR  ->  (
y  <  K  ->  E. z  e.  { n  e.  ZZ  |  ps }
y  <  z )
) )
5015, 49ralrimi 2432 . . . 4  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  A. y  e.  RR  ( y  < 
K  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) )
51 breq1 3788 . . . . . . . 8  |-  ( x  =  K  ->  (
x  <  y  <->  K  <  y ) )
5251notbid 624 . . . . . . 7  |-  ( x  =  K  ->  ( -.  x  <  y  <->  -.  K  <  y ) )
5352ralbidv 2368 . . . . . 6  |-  ( x  =  K  ->  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  <->  A. y  e.  { n  e.  ZZ  |  ps }  -.  K  <  y ) )
54 breq2 3789 . . . . . . . 8  |-  ( x  =  K  ->  (
y  <  x  <->  y  <  K ) )
5554imbi1d 229 . . . . . . 7  |-  ( x  =  K  ->  (
( y  <  x  ->  E. z  e.  {
n  e.  ZZ  |  ps } y  <  z
)  <->  ( y  < 
K  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
5655ralbidv 2368 . . . . . 6  |-  ( x  =  K  ->  ( A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
n  e.  ZZ  |  ps } y  <  z
)  <->  A. y  e.  RR  ( y  <  K  ->  E. z  e.  {
n  e.  ZZ  |  ps } y  <  z
) ) )
5753, 56anbi12d 456 . . . . 5  |-  ( x  =  K  ->  (
( A. y  e. 
{ n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) )  <->  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  K  <  y  /\  A. y  e.  RR  (
y  <  K  ->  E. z  e.  { n  e.  ZZ  |  ps }
y  <  z )
) ) )
5857rspcev 2701 . . . 4  |-  ( ( K  e.  ZZ  /\  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  K  < 
y  /\  A. y  e.  RR  ( y  < 
K  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
592, 41, 50, 58syl12anc 1167 . . 3  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  [. K  /  n ]. ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
60 sbcng 2854 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( [. K  /  n ].  -.  ps 
<->  -.  [. K  /  n ]. ps ) )
6160ad2antrr 471 . . . . . . 7  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  -> 
( [. K  /  n ].  -.  ps  <->  -.  [. K  /  n ]. ps )
)
6261biimpar 291 . . . . . 6  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  [. K  /  n ].  -.  ps )
63 sbcsng 3451 . . . . . . 7  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( [. K  /  n ].  -.  ps 
<-> 
A. n  e.  { K }  -.  ps )
)
6463ad3antrrr 475 . . . . . 6  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  ( [. K  /  n ].  -.  ps  <->  A. n  e.  { K }  -.  ps ) )
6562, 64mpbid 145 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  A. n  e.  { K }  -.  ps )
66 simplrr 502 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  A. n  e.  ( ZZ>= `  ( K  +  1 ) )  -.  ps )
67 uzid 8633 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  K  e.  ( ZZ>= `  K )
)
68 peano2uz 8671 . . . . . . . . . . 11  |-  ( K  e.  ( ZZ>= `  K
)  ->  ( K  +  1 )  e.  ( ZZ>= `  K )
)
6967, 68syl 14 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( K  +  1 )  e.  ( ZZ>= `  K
) )
70 fzouzsplit 9188 . . . . . . . . . 10  |-  ( ( K  +  1 )  e.  ( ZZ>= `  K
)  ->  ( ZZ>= `  K )  =  ( ( K..^ ( K  +  1 ) )  u.  ( ZZ>= `  ( K  +  1 ) ) ) )
711, 69, 703syl 17 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  K )  =  ( ( K..^ ( K  +  1 ) )  u.  ( ZZ>= `  ( K  +  1 ) ) ) )
72 fzosn 9214 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  ( K..^ ( K  +  1 ) )  =  { K } )
731, 72syl 14 . . . . . . . . . 10  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K..^ ( K  +  1
) )  =  { K } )
7473uneq1d 3125 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( ( K..^ ( K  +  1 ) )  u.  ( ZZ>=
`  ( K  + 
1 ) ) )  =  ( { K }  u.  ( ZZ>= `  ( K  +  1
) ) ) )
7571, 74eqtrd 2113 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  K )  =  ( { K }  u.  ( ZZ>= `  ( K  +  1 ) ) ) )
7675raleqdv 2555 . . . . . . 7  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( A. n  e.  ( ZZ>= `  K )  -.  ps  <->  A. n  e.  ( { K }  u.  ( ZZ>=
`  ( K  + 
1 ) ) )  -.  ps ) )
77 ralunb 3153 . . . . . . 7  |-  ( A. n  e.  ( { K }  u.  ( ZZ>=
`  ( K  + 
1 ) ) )  -.  ps  <->  ( A. n  e.  { K }  -.  ps  /\  A. n  e.  ( ZZ>= `  ( K  +  1
) )  -.  ps ) )
7876, 77syl6bb 194 . . . . . 6  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( A. n  e.  ( ZZ>= `  K )  -.  ps  <->  ( A. n  e.  { K }  -.  ps  /\  A. n  e.  ( ZZ>= `  ( K  +  1
) )  -.  ps ) ) )
7978ad3antrrr 475 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  ( A. n  e.  ( ZZ>=
`  K )  -. 
ps 
<->  ( A. n  e. 
{ K }  -.  ps  /\  A. n  e.  ( ZZ>= `  ( K  +  1 ) )  -.  ps ) ) )
8065, 66, 79mpbir2and 885 . . . 4  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  A. n  e.  ( ZZ>= `  K )  -.  ps )
81 simprl 497 . . . . . 6  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  ->  ph )
82 simplr 496 . . . . . 6  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  -> 
( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
8381, 82mpand 419 . . . . 5  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  -> 
( A. n  e.  ( ZZ>= `  K )  -.  ps  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
8483adantr 270 . . . 4  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  ( A. n  e.  ( ZZ>=
`  K )  -. 
ps  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
8580, 84mpd 13 . . 3  |-  ( ( ( ( K  e.  ( ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  /\  -.  [. K  /  n ]. ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
86 zsupcllemstep.dc . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
8786ralrimiva 2434 . . . . . 6  |-  ( ph  ->  A. n  e.  (
ZZ>= `  M )DECID  ps )
8881, 87syl 14 . . . . 5  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  ->  A. n  e.  ( ZZ>=
`  M )DECID  ps )
89 nfsbc1v 2833 . . . . . . . 8  |-  F/ n [. K  /  n ]. ps
9089nfdc 1589 . . . . . . 7  |-  F/ nDECID  [. K  /  n ]. ps
91 sbceq1a 2824 . . . . . . . 8  |-  ( n  =  K  ->  ( ps 
<-> 
[. K  /  n ]. ps ) )
9291dcbid 781 . . . . . . 7  |-  ( n  =  K  ->  (DECID  ps  <-> DECID  [. K  /  n ]. ps )
)
9390, 92rspc 2695 . . . . . 6  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( A. n  e.  ( ZZ>= `  M )DECID  ps  -> DECID  [. K  /  n ]. ps ) )
9493ad2antrr 471 . . . . 5  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  -> 
( A. n  e.  ( ZZ>= `  M )DECID  ps  -> DECID  [. K  /  n ]. ps ) )
9588, 94mpd 13 . . . 4  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  -> DECID  [. K  /  n ]. ps )
96 exmiddc 777 . . . 4  |-  (DECID  [. K  /  n ]. ps  ->  (
[. K  /  n ]. ps  \/  -.  [. K  /  n ]. ps ) )
9795, 96syl 14 . . 3  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  -> 
( [. K  /  n ]. ps  \/  -.  [. K  /  n ]. ps ) )
9859, 85, 97mpjaodan 744 . 2  |-  ( ( ( K  e.  (
ZZ>= `  M )  /\  ( ( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )  /\  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
9998exp31 356 1  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( (
( ph  /\  A. n  e.  ( ZZ>= `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  ->  ( ( ph  /\ 
A. n  e.  (
ZZ>= `  ( K  + 
1 ) )  -. 
ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661  DECID wdc 775    = wceq 1284    e. wcel 1433   [wsb 1685   A.wral 2348   E.wrex 2349   {crab 2352   [.wsbc 2815    u. cun 2971   {csn 3398   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   RRcr 6980   1c1 6982    + caddc 6984    < clt 7153    <_ cle 7154   ZZcz 8351   ZZ>=cuz 8619  ..^cfzo 9152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-fzo 9153
This theorem is referenced by:  zsupcllemex  10342
  Copyright terms: Public domain W3C validator