| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zsupcllemstep | Unicode version | ||
| Description: Lemma for zsupcl 10343. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.) |
| Ref | Expression |
|---|---|
| zsupcllemstep.dc |
|
| Ref | Expression |
|---|---|
| zsupcllemstep |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 8628 |
. . . . 5
| |
| 2 | 1 | ad3antrrr 475 |
. . . 4
|
| 3 | nfv 1461 |
. . . . . . . 8
| |
| 4 | nfv 1461 |
. . . . . . . . 9
| |
| 5 | nfcv 2219 |
. . . . . . . . . 10
| |
| 6 | nfra1 2397 |
. . . . . . . . . . 11
| |
| 7 | nfra1 2397 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | nfan 1497 |
. . . . . . . . . 10
|
| 9 | 5, 8 | nfrexya 2405 |
. . . . . . . . 9
|
| 10 | 4, 9 | nfim 1504 |
. . . . . . . 8
|
| 11 | 3, 10 | nfan 1497 |
. . . . . . 7
|
| 12 | nfv 1461 |
. . . . . . 7
| |
| 13 | 11, 12 | nfan 1497 |
. . . . . 6
|
| 14 | nfv 1461 |
. . . . . 6
| |
| 15 | 13, 14 | nfan 1497 |
. . . . 5
|
| 16 | nfcv 2219 |
. . . . . . . . . . 11
| |
| 17 | 16 | elrabsf 2852 |
. . . . . . . . . 10
|
| 18 | 17 | simprbi 269 |
. . . . . . . . 9
|
| 19 | sbsbc 2819 |
. . . . . . . . 9
| |
| 20 | 18, 19 | sylibr 132 |
. . . . . . . 8
|
| 21 | 20 | ad2antlr 472 |
. . . . . . 7
|
| 22 | elrabi 2746 |
. . . . . . . . . . 11
| |
| 23 | zltp1le 8405 |
. . . . . . . . . . 11
| |
| 24 | 2, 22, 23 | syl2an 283 |
. . . . . . . . . 10
|
| 25 | 24 | biimpa 290 |
. . . . . . . . 9
|
| 26 | 2 | peano2zd 8472 |
. . . . . . . . . . 11
|
| 27 | eluz 8632 |
. . . . . . . . . . 11
| |
| 28 | 26, 22, 27 | syl2an 283 |
. . . . . . . . . 10
|
| 29 | 28 | adantr 270 |
. . . . . . . . 9
|
| 30 | 25, 29 | mpbird 165 |
. . . . . . . 8
|
| 31 | simprr 498 |
. . . . . . . . 9
| |
| 32 | 31 | ad3antrrr 475 |
. . . . . . . 8
|
| 33 | nfs1v 1856 |
. . . . . . . . . 10
| |
| 34 | 33 | nfn 1588 |
. . . . . . . . 9
|
| 35 | sbequ12 1694 |
. . . . . . . . . 10
| |
| 36 | 35 | notbid 624 |
. . . . . . . . 9
|
| 37 | 34, 36 | rspc 2695 |
. . . . . . . 8
|
| 38 | 30, 32, 37 | sylc 61 |
. . . . . . 7
|
| 39 | 21, 38 | pm2.65da 619 |
. . . . . 6
|
| 40 | 39 | ex 113 |
. . . . 5
|
| 41 | 15, 40 | ralrimi 2432 |
. . . 4
|
| 42 | 2 | ad2antrr 471 |
. . . . . . . 8
|
| 43 | simpllr 500 |
. . . . . . . 8
| |
| 44 | 16 | elrabsf 2852 |
. . . . . . . 8
|
| 45 | 42, 43, 44 | sylanbrc 408 |
. . . . . . 7
|
| 46 | breq2 3789 |
. . . . . . . 8
| |
| 47 | 46 | rspcev 2701 |
. . . . . . 7
|
| 48 | 45, 47 | sylancom 411 |
. . . . . 6
|
| 49 | 48 | exp31 356 |
. . . . 5
|
| 50 | 15, 49 | ralrimi 2432 |
. . . 4
|
| 51 | breq1 3788 |
. . . . . . . 8
| |
| 52 | 51 | notbid 624 |
. . . . . . 7
|
| 53 | 52 | ralbidv 2368 |
. . . . . 6
|
| 54 | breq2 3789 |
. . . . . . . 8
| |
| 55 | 54 | imbi1d 229 |
. . . . . . 7
|
| 56 | 55 | ralbidv 2368 |
. . . . . 6
|
| 57 | 53, 56 | anbi12d 456 |
. . . . 5
|
| 58 | 57 | rspcev 2701 |
. . . 4
|
| 59 | 2, 41, 50, 58 | syl12anc 1167 |
. . 3
|
| 60 | sbcng 2854 |
. . . . . . . 8
| |
| 61 | 60 | ad2antrr 471 |
. . . . . . 7
|
| 62 | 61 | biimpar 291 |
. . . . . 6
|
| 63 | sbcsng 3451 |
. . . . . . 7
| |
| 64 | 63 | ad3antrrr 475 |
. . . . . 6
|
| 65 | 62, 64 | mpbid 145 |
. . . . 5
|
| 66 | simplrr 502 |
. . . . 5
| |
| 67 | uzid 8633 |
. . . . . . . . . . 11
| |
| 68 | peano2uz 8671 |
. . . . . . . . . . 11
| |
| 69 | 67, 68 | syl 14 |
. . . . . . . . . 10
|
| 70 | fzouzsplit 9188 |
. . . . . . . . . 10
| |
| 71 | 1, 69, 70 | 3syl 17 |
. . . . . . . . 9
|
| 72 | fzosn 9214 |
. . . . . . . . . . 11
| |
| 73 | 1, 72 | syl 14 |
. . . . . . . . . 10
|
| 74 | 73 | uneq1d 3125 |
. . . . . . . . 9
|
| 75 | 71, 74 | eqtrd 2113 |
. . . . . . . 8
|
| 76 | 75 | raleqdv 2555 |
. . . . . . 7
|
| 77 | ralunb 3153 |
. . . . . . 7
| |
| 78 | 76, 77 | syl6bb 194 |
. . . . . 6
|
| 79 | 78 | ad3antrrr 475 |
. . . . 5
|
| 80 | 65, 66, 79 | mpbir2and 885 |
. . . 4
|
| 81 | simprl 497 |
. . . . . 6
| |
| 82 | simplr 496 |
. . . . . 6
| |
| 83 | 81, 82 | mpand 419 |
. . . . 5
|
| 84 | 83 | adantr 270 |
. . . 4
|
| 85 | 80, 84 | mpd 13 |
. . 3
|
| 86 | zsupcllemstep.dc |
. . . . . . 7
| |
| 87 | 86 | ralrimiva 2434 |
. . . . . 6
|
| 88 | 81, 87 | syl 14 |
. . . . 5
|
| 89 | nfsbc1v 2833 |
. . . . . . . 8
| |
| 90 | 89 | nfdc 1589 |
. . . . . . 7
|
| 91 | sbceq1a 2824 |
. . . . . . . 8
| |
| 92 | 91 | dcbid 781 |
. . . . . . 7
|
| 93 | 90, 92 | rspc 2695 |
. . . . . 6
|
| 94 | 93 | ad2antrr 471 |
. . . . 5
|
| 95 | 88, 94 | mpd 13 |
. . . 4
|
| 96 | exmiddc 777 |
. . . 4
| |
| 97 | 95, 96 | syl 14 |
. . 3
|
| 98 | 59, 85, 97 | mpjaodan 744 |
. 2
|
| 99 | 98 | exp31 356 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 df-fz 9030 df-fzo 9153 |
| This theorem is referenced by: zsupcllemex 10342 |
| Copyright terms: Public domain | W3C validator |