ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqdc Unicode version

Theorem enqdc 6551
Description: The equivalence relation for positive fractions is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.)
Assertion
Ref Expression
enqdc  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  -> DECID  <. A ,  B >.  ~Q  <. C ,  D >. )

Proof of Theorem enqdc
StepHypRef Expression
1 mulclpi 6518 . . . 4  |-  ( ( A  e.  N.  /\  D  e.  N. )  ->  ( A  .N  D
)  e.  N. )
2 mulclpi 6518 . . . 4  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  .N  C
)  e.  N. )
3 pinn 6499 . . . . 5  |-  ( ( A  .N  D )  e.  N.  ->  ( A  .N  D )  e. 
om )
4 pinn 6499 . . . . 5  |-  ( ( B  .N  C )  e.  N.  ->  ( B  .N  C )  e. 
om )
5 nndceq 6100 . . . . 5  |-  ( ( ( A  .N  D
)  e.  om  /\  ( B  .N  C
)  e.  om )  -> DECID  ( A  .N  D )  =  ( B  .N  C ) )
63, 4, 5syl2an 283 . . . 4  |-  ( ( ( A  .N  D
)  e.  N.  /\  ( B  .N  C
)  e.  N. )  -> DECID  ( A  .N  D )  =  ( B  .N  C ) )
71, 2, 6syl2an 283 . . 3  |-  ( ( ( A  e.  N.  /\  D  e.  N. )  /\  ( B  e.  N.  /\  C  e.  N. )
)  -> DECID  ( A  .N  D
)  =  ( B  .N  C ) )
87an42s 553 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  -> DECID  ( A  .N  D
)  =  ( B  .N  C ) )
9 enqbreq 6546 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  ~Q  <. C ,  D >.  <->  ( A  .N  D )  =  ( B  .N  C ) ) )
109dcbid 781 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  (DECID  <. A ,  B >.  ~Q  <. C ,  D >. 
<-> DECID  ( A  .N  D )  =  ( B  .N  C ) ) )
118, 10mpbird 165 1  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  -> DECID  <. A ,  B >.  ~Q  <. C ,  D >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102  DECID wdc 775    = wceq 1284    e. wcel 1433   <.cop 3401   class class class wbr 3785   omcom 4331  (class class class)co 5532   N.cnpi 6462    .N cmi 6464    ~Q ceq 6469
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-ni 6494  df-mi 6496  df-enq 6537
This theorem is referenced by:  enqdc1  6552
  Copyright terms: Public domain W3C validator