ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  deceq2 Unicode version

Theorem deceq2 8482
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
deceq2  |-  ( A  =  B  -> ; C A  = ; C B )

Proof of Theorem deceq2
StepHypRef Expression
1 oveq2 5540 . 2  |-  ( A  =  B  ->  (
( ( 9  +  1 )  x.  C
)  +  A )  =  ( ( ( 9  +  1 )  x.  C )  +  B ) )
2 df-dec 8478 . 2  |- ; C A  =  ( ( ( 9  +  1 )  x.  C
)  +  A )
3 df-dec 8478 . 2  |- ; C B  =  ( ( ( 9  +  1 )  x.  C
)  +  B )
41, 2, 33eqtr4g 2138 1  |-  ( A  =  B  -> ; C A  = ; C B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284  (class class class)co 5532   1c1 6982    + caddc 6984    x. cmul 6986   9c9 8096  ;cdc 8477
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-iota 4887  df-fv 4930  df-ov 5535  df-dec 8478
This theorem is referenced by:  deceq2i  8484
  Copyright terms: Public domain W3C validator