HomeHome Intuitionistic Logic Explorer
Theorem List (p. 85 of 108)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8401-8500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremzrevaddcl 8401 Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004.)
 |-  ( N  e.  ZZ  ->  ( ( M  e.  CC  /\  ( M  +  N )  e.  ZZ ) 
 <->  M  e.  ZZ )
 )
 
Theoremznnsub 8402 The positive difference of unequal integers is a positive integer. (Generalization of nnsub 8077.) (Contributed by NM, 11-May-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <-> 
 ( N  -  M )  e.  NN )
 )
 
Theoremnzadd 8403 The sum of a real number not being an integer and an integer is not an integer. Note that "not being an integer" in this case means "the negation of is an integer" rather than "is apart from any integer" (given excluded middle, those two would be equivalent). (Contributed by AV, 19-Jul-2021.)
 |-  ( ( A  e.  ( RR  \  ZZ )  /\  B  e.  ZZ )  ->  ( A  +  B )  e.  ( RR  \  ZZ ) )
 
Theoremzmulcl 8404 Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N )  e.  ZZ )
 
Theoremzltp1le 8405 Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <-> 
 ( M  +  1 )  <_  N )
 )
 
Theoremzleltp1 8406 Integer ordering relation. (Contributed by NM, 10-May-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  M  <  ( N  +  1 ) ) )
 
Theoremzlem1lt 8407 Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <-> 
 ( M  -  1
 )  <  N )
 )
 
Theoremzltlem1 8408 Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  M  <_  ( N  -  1 ) ) )
 
Theoremzgt0ge1 8409 An integer greater than  0 is greater than or equal to  1. (Contributed by AV, 14-Oct-2018.)
 |-  ( Z  e.  ZZ  ->  ( 0  <  Z  <->  1 
 <_  Z ) )
 
Theoremnnleltp1 8410 Positive integer ordering relation. (Contributed by NM, 13-Aug-2001.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  <_  B  <->  A  <  ( B  +  1 ) ) )
 
Theoremnnltp1le 8411 Positive integer ordering relation. (Contributed by NM, 19-Aug-2001.)
 |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  <  B  <-> 
 ( A  +  1 )  <_  B )
 )
 
Theoremnnaddm1cl 8412 Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  +  B )  -  1 )  e.  NN )
 
Theoremnn0ltp1le 8413 Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <  N  <->  ( M  +  1 ) 
 <_  N ) )
 
Theoremnn0leltp1 8414 Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Apr-2004.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <_  N  <->  M  <  ( N  +  1 ) ) )
 
Theoremnn0ltlem1 8415 Nonnegative integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <  N  <->  M 
 <_  ( N  -  1
 ) ) )
 
Theoremznn0sub 8416 The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub 8417.) (Contributed by NM, 14-Jul-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <-> 
 ( N  -  M )  e.  NN0 ) )
 
Theoremnn0sub 8417 Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <_  N  <->  ( N  -  M )  e.  NN0 ) )
 
Theoremnn0n0n1ge2 8418 A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.)
 |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  -> 
 2  <_  N )
 
Theoremelz2 8419* Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.)
 |-  ( N  e.  ZZ  <->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
 
Theoremdfz2 8420 Alternate definition of the integers, based on elz2 8419. (Contributed by Mario Carneiro, 16-May-2014.)
 |- 
 ZZ  =  (  -  " ( NN  X.  NN ) )
 
Theoremnn0sub2 8421 Subtraction of nonnegative integers. (Contributed by NM, 4-Sep-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( N  -  M )  e. 
 NN0 )
 
Theoremzapne 8422 Apartness is equivalent to not equal for integers. (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M #  N  <->  M  =/=  N ) )
 
Theoremzdceq 8423 Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  =  B )
 
Theoremzdcle 8424 Integer  <_ is decidable. (Contributed by Jim Kingdon, 7-Apr-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <_  B )
 
Theoremzdclt 8425 Integer  < is decidable. (Contributed by Jim Kingdon, 1-Jun-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <  B )
 
Theoremzltlen 8426 Integer 'Less than' expressed in terms of 'less than or equal to'. Also see ltleap 7730 which is a similar result for real numbers. (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <-> 
 ( A  <_  B  /\  B  =/=  A ) ) )
 
Theoremnn0n0n1ge2b 8427 A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.)
 |-  ( N  e.  NN0  ->  ( ( N  =/=  0  /\  N  =/=  1
 ) 
 <->  2  <_  N )
 )
 
Theoremnn0lt10b 8428 A nonnegative integer less than  1 is  0. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( N  e.  NN0  ->  ( N  <  1  <->  N  =  0
 ) )
 
Theoremnn0lt2 8429 A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
 |-  ( ( N  e.  NN0  /\  N  <  2 ) 
 ->  ( N  =  0  \/  N  =  1 ) )
 
Theoremnn0lem1lt 8430 Nonnegative integer ordering relation. (Contributed by NM, 21-Jun-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <_  N  <->  ( M  -  1 )  <  N ) )
 
Theoremnnlem1lt 8431 Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.)
 |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  <_  N  <-> 
 ( M  -  1
 )  <  N )
 )
 
Theoremnnltlem1 8432 Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.)
 |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  <  N  <->  M  <_  ( N  -  1 ) ) )
 
Theoremnnm1ge0 8433 A positive integer decreased by 1 is greater than or equal to 0. (Contributed by AV, 30-Oct-2018.)
 |-  ( N  e.  NN  ->  0  <_  ( N  -  1 ) )
 
Theoremnn0ge0div 8434 Division of a nonnegative integer by a positive number is not negative. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
 |-  ( ( K  e.  NN0  /\  L  e.  NN )  ->  0  <_  ( K  /  L ) )
 
Theoremzdiv 8435* Two ways to express " M divides  N. (Contributed by NM, 3-Oct-2008.)
 |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( E. k  e.  ZZ  ( M  x.  k )  =  N  <->  ( N  /  M )  e.  ZZ ) )
 
Theoremzdivadd 8436 Property of divisibility: if  D divides  A and  B then it divides  A  +  B. (Contributed by NM, 3-Oct-2008.)
 |-  ( ( ( D  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  /  D )  e.  ZZ  /\  ( B  /  D )  e. 
 ZZ ) )  ->  ( ( A  +  B )  /  D )  e.  ZZ )
 
Theoremzdivmul 8437 Property of divisibility: if  D divides  A then it divides  B  x.  A. (Contributed by NM, 3-Oct-2008.)
 |-  ( ( ( D  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A 
 /  D )  e. 
 ZZ )  ->  (
 ( B  x.  A )  /  D )  e. 
 ZZ )
 
Theoremzextle 8438* An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\ 
 A. k  e.  ZZ  ( k  <_  M  <->  k  <_  N ) )  ->  M  =  N )
 
Theoremzextlt 8439* An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\ 
 A. k  e.  ZZ  ( k  <  M  <->  k  <  N ) )  ->  M  =  N )
 
Theoremrecnz 8440 The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.)
 |-  ( ( A  e.  RR  /\  1  <  A )  ->  -.  ( 1  /  A )  e.  ZZ )
 
Theorembtwnnz 8441 A number between an integer and its successor is not an integer. (Contributed by NM, 3-May-2005.)
 |-  ( ( A  e.  ZZ  /\  A  <  B  /\  B  <  ( A  +  1 ) ) 
 ->  -.  B  e.  ZZ )
 
Theoremgtndiv 8442 A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A ) 
 ->  -.  ( B  /  A )  e.  ZZ )
 
Theoremhalfnz 8443 One-half is not an integer. (Contributed by NM, 31-Jul-2004.)
 |- 
 -.  ( 1  / 
 2 )  e.  ZZ
 
Theorem3halfnz 8444 Three halves is not an integer. (Contributed by AV, 2-Jun-2020.)
 |- 
 -.  ( 3  / 
 2 )  e.  ZZ
 
Theoremsuprzclex 8445* The supremum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 20-Dec-2021.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  ZZ )   =>    |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  A )
 
Theoremprime 8446* Two ways to express " A is a prime number (or 1)." (Contributed by NM, 4-May-2005.)
 |-  ( A  e.  NN  ->  ( A. x  e. 
 NN  ( ( A 
 /  x )  e. 
 NN  ->  ( x  =  1  \/  x  =  A ) )  <->  A. x  e.  NN  ( ( 1  < 
 x  /\  x  <_  A 
 /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
 
Theoremmsqznn 8447 The square of a nonzero integer is a positive integer. (Contributed by NM, 2-Aug-2004.)
 |-  ( ( A  e.  ZZ  /\  A  =/=  0
 )  ->  ( A  x.  A )  e.  NN )
 
Theoremzneo 8448 No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  A )  =/=  (
 ( 2  x.  B )  +  1 )
 )
 
Theoremnneoor 8449 A positive integer is even or odd. (Contributed by Jim Kingdon, 15-Mar-2020.)
 |-  ( N  e.  NN  ->  ( ( N  / 
 2 )  e.  NN  \/  ( ( N  +  1 )  /  2
 )  e.  NN )
 )
 
Theoremnneo 8450 A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.)
 |-  ( N  e.  NN  ->  ( ( N  / 
 2 )  e.  NN  <->  -.  ( ( N  +  1 )  /  2
 )  e.  NN )
 )
 
Theoremnneoi 8451 A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.)
 |-  N  e.  NN   =>    |-  ( ( N 
 /  2 )  e. 
 NN 
 <->  -.  ( ( N  +  1 )  / 
 2 )  e.  NN )
 
Theoremzeo 8452 An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
 |-  ( N  e.  ZZ  ->  ( ( N  / 
 2 )  e.  ZZ  \/  ( ( N  +  1 )  /  2
 )  e.  ZZ )
 )
 
Theoremzeo2 8453 An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.)
 |-  ( N  e.  ZZ  ->  ( ( N  / 
 2 )  e.  ZZ  <->  -.  ( ( N  +  1 )  /  2
 )  e.  ZZ )
 )
 
Theorempeano2uz2 8454* Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.)
 |-  ( ( A  e.  ZZ  /\  B  e.  { x  e.  ZZ  |  A  <_  x } )  ->  ( B  +  1
 )  e.  { x  e.  ZZ  |  A  <_  x } )
 
Theorempeano5uzti 8455* Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.)
 |-  ( N  e.  ZZ  ->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  { k  e. 
 ZZ  |  N  <_  k }  C_  A )
 )
 
Theorempeano5uzi 8456* Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 3-May-2014.)
 |-  N  e.  ZZ   =>    |-  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  { k  e.  ZZ  |  N  <_  k }  C_  A )
 
Theoremdfuzi 8457* An expression for the upper integers that start at  N that is analogous to dfnn2 8041 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
 |-  N  e.  ZZ   =>    |-  { z  e. 
 ZZ  |  N  <_  z }  =  |^| { x  |  ( N  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }
 
Theoremuzind 8458* Induction on the upper integers that start at  M. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
 |-  ( j  =  M  ->  ( ph  <->  ps ) )   &    |-  (
 j  =  k  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   &    |-  ( M  e.  ZZ  ->  ps )   &    |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_  k )  ->  ( ch  ->  th ) )   =>    |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ta )
 
Theoremuzind2 8459* Induction on the upper integers that start after an integer  M. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.)
 |-  ( j  =  ( M  +  1 ) 
 ->  ( ph  <->  ps ) )   &    |-  (
 j  =  k  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   &    |-  ( M  e.  ZZ  ->  ps )   &    |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <  k )  ->  ( ch  ->  th ) )   =>    |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <  N )  ->  ta )
 
Theoremuzind3 8460* Induction on the upper integers that start at an integer  M. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005.)
 |-  ( j  =  M  ->  ( ph  <->  ps ) )   &    |-  (
 j  =  m  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( m  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   &    |-  ( M  e.  ZZ  ->  ps )   &    |-  ( ( M  e.  ZZ  /\  m  e.  { k  e.  ZZ  |  M  <_  k }
 )  ->  ( ch  ->  th ) )   =>    |-  ( ( M  e.  ZZ  /\  N  e.  { k  e.  ZZ  |  M  <_  k }
 )  ->  ta )
 
Theoremnn0ind 8461* Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.)
 |-  ( x  =  0 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 y  e.  NN0  ->  ( ch  ->  th )
 )   =>    |-  ( A  e.  NN0  ->  ta )
 
Theoremfzind 8462* Induction on the integers from  M to  N inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( x  =  M  ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  K  ->  (
 ph 
 <->  ta ) )   &    |-  (
 ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ps )   &    |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  M  <_  y  /\  y  <  N ) ) 
 ->  ( ch  ->  th )
 )   =>    |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) )  ->  ta )
 
Theoremfnn0ind 8463* Induction on the integers from  0 to  N inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( x  =  0 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  K  ->  (
 ph 
 <->  ta ) )   &    |-  ( N  e.  NN0  ->  ps )   &    |-  (
 ( N  e.  NN0  /\  y  e.  NN0  /\  y  <  N )  ->  ( ch  ->  th ) )   =>    |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  K  <_  N )  ->  ta )
 
Theoremnn0ind-raph 8464* Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.)
 |-  ( x  =  0 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 y  e.  NN0  ->  ( ch  ->  th )
 )   =>    |-  ( A  e.  NN0  ->  ta )
 
Theoremzindd 8465* Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.)
 |-  ( x  =  0 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  ta ) )   &    |-  ( x  =  -u y  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  et ) )   &    |-  ( ze  ->  ps )   &    |-  ( ze  ->  ( y  e.  NN0  ->  ( ch  ->  ta )
 ) )   &    |-  ( ze  ->  ( y  e.  NN  ->  ( ch  ->  th )
 ) )   =>    |-  ( ze  ->  ( A  e.  ZZ  ->  et ) )
 
Theorembtwnz 8466* Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.)
 |-  ( A  e.  RR  ->  ( E. x  e. 
 ZZ  x  <  A  /\  E. y  e.  ZZ  A  <  y ) )
 
Theoremnn0zd 8467 A positive integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN0 )   =>    |-  ( ph  ->  A  e.  ZZ )
 
Theoremnnzd 8468 A nonnegative integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN )   =>    |-  ( ph  ->  A  e.  ZZ )
 
Theoremzred 8469 An integer is a real number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremzcnd 8470 An integer is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  A  e.  CC )
 
Theoremznegcld 8471 Closure law for negative integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  -u A  e.  ZZ )
 
Theorempeano2zd 8472 Deduction from second Peano postulate generalized to integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  ( A  +  1 )  e.  ZZ )
 
Theoremzaddcld 8473 Closure of addition of integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   =>    |-  ( ph  ->  ( A  +  B )  e.  ZZ )
 
Theoremzsubcld 8474 Closure of subtraction of integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   =>    |-  ( ph  ->  ( A  -  B )  e.  ZZ )
 
Theoremzmulcld 8475 Closure of multiplication of integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   =>    |-  ( ph  ->  ( A  x.  B )  e.  ZZ )
 
Theoremzadd2cl 8476 Increasing an integer by 2 results in an integer. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
 |-  ( N  e.  ZZ  ->  ( N  +  2 )  e.  ZZ )
 
3.4.9  Decimal arithmetic
 
Syntaxcdc 8477 Constant used for decimal constructor.
 class ; A B
 
Definitiondf-dec 8478 Define the "decimal constructor", which is used to build up "decimal integers" or "numeric terms" in base  1
0. For example,  (;;; 1 0 0 0  + ;;; 2 0 0 0 )  = ;;; 3 0 0 0 1kp2ke3k 10562. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 1-Aug-2021.)
 |- ; A B  =  ( ( ( 9  +  1 )  x.  A )  +  B )
 
Theorem9p1e10 8479 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.)
 |-  ( 9  +  1 )  = ; 1 0
 
Theoremdfdec10 8480 Version of the definition of the "decimal constructor" using ; 1 0 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.)
 |- ; A B  =  ( (; 1 0  x.  A )  +  B )
 
Theoremdeceq1 8481 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  ( A  =  B  -> ; A C  = ; B C )
 
Theoremdeceq2 8482 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  ( A  =  B  -> ; C A  = ; C B )
 
Theoremdeceq1i 8483 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  =  B   =>    |- ; A C  = ; B C
 
Theoremdeceq2i 8484 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  =  B   =>    |- ; C A  = ; C B
 
Theoremdeceq12i 8485 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  =  B   &    |-  C  =  D   =>    |- ; A C  = ; B D
 
Theoremnumnncl 8486 Closure for a numeral (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN   =>    |-  ( ( T  x.  A )  +  B )  e.  NN
 
Theoremnum0u 8487 Add a zero in the units place. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   =>    |-  ( T  x.  A )  =  ( ( T  x.  A )  +  0 )
 
Theoremnum0h 8488 Add a zero in the higher places. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   =>    |-  A  =  ( ( T  x.  0 )  +  A )
 
Theoremnumcl 8489 Closure for a decimal integer (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   =>    |-  ( ( T  x.  A )  +  B )  e.  NN0
 
Theoremnumsuc 8490 The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  ( B  +  1 )  =  C   &    |-  N  =  ( ( T  x.  A )  +  B )   =>    |-  ( N  +  1 )  =  ( ( T  x.  A )  +  C )
 
Theoremdeccl 8491 Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   =>    |- ; A B  e.  NN0
 
Theorem10nn 8492 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.)
 |- ; 1
 0  e.  NN
 
Theorem10pos 8493 The number 10 is positive. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.)
 |-  0  < ; 1 0
 
Theorem10nn0 8494 10 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |- ; 1
 0  e.  NN0
 
Theorem10re 8495 The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.)
 |- ; 1
 0  e.  RR
 
Theoremdecnncl 8496 Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  A  e.  NN0   &    |-  B  e.  NN   =>    |- ; A B  e.  NN
 
Theoremdec0u 8497 Add a zero in the units place. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  A  e.  NN0   =>    |-  (; 1 0  x.  A )  = ; A 0
 
Theoremdec0h 8498 Add a zero in the higher places. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  A  e.  NN0   =>    |-  A  = ; 0 A
 
Theoremnumnncl2 8499 Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 9-Mar-2015.)
 |-  T  e.  NN   &    |-  A  e.  NN   =>    |-  ( ( T  x.  A )  +  0
 )  e.  NN
 
Theoremdecnncl2 8500 Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
 |-  A  e.  NN   =>    |- ; A 0  e.  NN
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10795
  Copyright terms: Public domain < Previous  Next >