| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dff1o2 | Unicode version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| dff1o2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 4929 |
. 2
| |
| 2 | df-f1 4927 |
. . . 4
| |
| 3 | df-fo 4928 |
. . . 4
| |
| 4 | 2, 3 | anbi12i 447 |
. . 3
|
| 5 | anass 393 |
. . . 4
| |
| 6 | 3anan12 931 |
. . . . . 6
| |
| 7 | 6 | anbi1i 445 |
. . . . 5
|
| 8 | eqimss 3051 |
. . . . . . . 8
| |
| 9 | df-f 4926 |
. . . . . . . . 9
| |
| 10 | 9 | biimpri 131 |
. . . . . . . 8
|
| 11 | 8, 10 | sylan2 280 |
. . . . . . 7
|
| 12 | 11 | 3adant2 957 |
. . . . . 6
|
| 13 | 12 | pm4.71i 383 |
. . . . 5
|
| 14 | ancom 262 |
. . . . 5
| |
| 15 | 7, 13, 14 | 3bitr4ri 211 |
. . . 4
|
| 16 | 5, 15 | bitri 182 |
. . 3
|
| 17 | 4, 16 | bitri 182 |
. 2
|
| 18 | 1, 17 | bitri 182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-in 2979 df-ss 2986 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 |
| This theorem is referenced by: dff1o3 5152 dff1o4 5154 f1orn 5156 dif1en 6364 |
| Copyright terms: Public domain | W3C validator |