Proof of Theorem dff1o2
| Step | Hyp | Ref
| Expression |
| 1 | | df-f1o 4929 |
. 2
⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) |
| 2 | | df-f1 4927 |
. . . 4
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) |
| 3 | | df-fo 4928 |
. . . 4
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| 4 | 2, 3 | anbi12i 447 |
. . 3
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) ↔ ((𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) |
| 5 | | anass 393 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹:𝐴⟶𝐵 ∧ (Fun ◡𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)))) |
| 6 | | 3anan12 931 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ (Fun ◡𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) |
| 7 | 6 | anbi1i 445 |
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ∧ 𝐹:𝐴⟶𝐵) ↔ ((Fun ◡𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ∧ 𝐹:𝐴⟶𝐵)) |
| 8 | | eqimss 3051 |
. . . . . . . 8
⊢ (ran
𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) |
| 9 | | df-f 4926 |
. . . . . . . . 9
⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
| 10 | 9 | biimpri 131 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → 𝐹:𝐴⟶𝐵) |
| 11 | 8, 10 | sylan2 280 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴⟶𝐵) |
| 12 | 11 | 3adant2 957 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴⟶𝐵) |
| 13 | 12 | pm4.71i 383 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ∧ 𝐹:𝐴⟶𝐵)) |
| 14 | | ancom 262 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ (Fun ◡𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) ↔ ((Fun ◡𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ∧ 𝐹:𝐴⟶𝐵)) |
| 15 | 7, 13, 14 | 3bitr4ri 211 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ (Fun ◡𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) |
| 16 | 5, 15 | bitri 182 |
. . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) |
| 17 | 4, 16 | bitri 182 |
. 2
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) |
| 18 | 1, 17 | bitri 182 |
1
⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) |