| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dif1en | Unicode version | ||
| Description: If a set |
| Ref | Expression |
|---|---|
| dif1en |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 939 |
. . . 4
| |
| 2 | 1 | ensymd 6286 |
. . 3
|
| 3 | bren 6251 |
. . 3
| |
| 4 | 2, 3 | sylib 120 |
. 2
|
| 5 | peano2 4336 |
. . . . . . . 8
| |
| 6 | nnfi 6357 |
. . . . . . . 8
| |
| 7 | 5, 6 | syl 14 |
. . . . . . 7
|
| 8 | 7 | 3ad2ant1 959 |
. . . . . 6
|
| 9 | enfii 6359 |
. . . . . 6
| |
| 10 | 8, 1, 9 | syl2anc 403 |
. . . . 5
|
| 11 | 10 | adantr 270 |
. . . 4
|
| 12 | simpl3 943 |
. . . 4
| |
| 13 | f1of 5146 |
. . . . . 6
| |
| 14 | 13 | adantl 271 |
. . . . 5
|
| 15 | sucidg 4171 |
. . . . . . 7
| |
| 16 | 15 | 3ad2ant1 959 |
. . . . . 6
|
| 17 | 16 | adantr 270 |
. . . . 5
|
| 18 | 14, 17 | ffvelrnd 5324 |
. . . 4
|
| 19 | fidifsnen 6355 |
. . . 4
| |
| 20 | 11, 12, 18, 19 | syl3anc 1169 |
. . 3
|
| 21 | nnord 4352 |
. . . . . . . 8
| |
| 22 | orddif 4290 |
. . . . . . . 8
| |
| 23 | 21, 22 | syl 14 |
. . . . . . 7
|
| 24 | 23 | 3ad2ant1 959 |
. . . . . 6
|
| 25 | 24 | adantr 270 |
. . . . 5
|
| 26 | 23 | eleq1d 2147 |
. . . . . . . . 9
|
| 27 | 26 | ibi 174 |
. . . . . . . 8
|
| 28 | 27 | 3ad2ant1 959 |
. . . . . . 7
|
| 29 | 28 | adantr 270 |
. . . . . 6
|
| 30 | dff1o2 5151 |
. . . . . . . . 9
| |
| 31 | 30 | simp2bi 954 |
. . . . . . . 8
|
| 32 | 31 | adantl 271 |
. . . . . . 7
|
| 33 | f1ofo 5153 |
. . . . . . . . 9
| |
| 34 | 33 | adantl 271 |
. . . . . . . 8
|
| 35 | f1orel 5149 |
. . . . . . . . . . . 12
| |
| 36 | 35 | adantl 271 |
. . . . . . . . . . 11
|
| 37 | resdm 4667 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | syl 14 |
. . . . . . . . . 10
|
| 39 | f1odm 5150 |
. . . . . . . . . . . 12
| |
| 40 | 39 | reseq2d 4630 |
. . . . . . . . . . 11
|
| 41 | 40 | adantl 271 |
. . . . . . . . . 10
|
| 42 | 38, 41 | eqtr3d 2115 |
. . . . . . . . 9
|
| 43 | foeq1 5122 |
. . . . . . . . 9
| |
| 44 | 42, 43 | syl 14 |
. . . . . . . 8
|
| 45 | 34, 44 | mpbid 145 |
. . . . . . 7
|
| 46 | simpl1 941 |
. . . . . . . . . 10
| |
| 47 | f1osng 5187 |
. . . . . . . . . 10
| |
| 48 | 46, 18, 47 | syl2anc 403 |
. . . . . . . . 9
|
| 49 | f1ofo 5153 |
. . . . . . . . 9
| |
| 50 | 48, 49 | syl 14 |
. . . . . . . 8
|
| 51 | f1ofn 5147 |
. . . . . . . . . . 11
| |
| 52 | 51 | adantl 271 |
. . . . . . . . . 10
|
| 53 | fnressn 5370 |
. . . . . . . . . 10
| |
| 54 | 52, 17, 53 | syl2anc 403 |
. . . . . . . . 9
|
| 55 | foeq1 5122 |
. . . . . . . . 9
| |
| 56 | 54, 55 | syl 14 |
. . . . . . . 8
|
| 57 | 50, 56 | mpbird 165 |
. . . . . . 7
|
| 58 | resdif 5168 |
. . . . . . 7
| |
| 59 | 32, 45, 57, 58 | syl3anc 1169 |
. . . . . 6
|
| 60 | f1oeng 6260 |
. . . . . 6
| |
| 61 | 29, 59, 60 | syl2anc 403 |
. . . . 5
|
| 62 | 25, 61 | eqbrtrd 3805 |
. . . 4
|
| 63 | 62 | ensymd 6286 |
. . 3
|
| 64 | entr 6287 |
. . 3
| |
| 65 | 20, 63, 64 | syl2anc 403 |
. 2
|
| 66 | 4, 65 | exlimddv 1819 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-er 6129 df-en 6245 df-fin 6247 |
| This theorem is referenced by: findcard 6372 findcard2 6373 findcard2s 6374 diffisn 6377 |
| Copyright terms: Public domain | W3C validator |