ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1odm Unicode version

Theorem f1odm 5150
Description: The domain of a one-to-one onto mapping. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1odm  |-  ( F : A -1-1-onto-> B  ->  dom  F  =  A )

Proof of Theorem f1odm
StepHypRef Expression
1 f1ofn 5147 . 2  |-  ( F : A -1-1-onto-> B  ->  F  Fn  A )
2 fndm 5018 . 2  |-  ( F  Fn  A  ->  dom  F  =  A )
31, 2syl 14 1  |-  ( F : A -1-1-onto-> B  ->  dom  F  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284   dom cdm 4363    Fn wfn 4917   -1-1-onto->wf1o 4921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105
This theorem depends on definitions:  df-bi 115  df-fn 4925  df-f 4926  df-f1 4927  df-f1o 4929
This theorem is referenced by:  f1imacnv  5163  f1opw2  5726  xpcomco  6323  phplem4  6341  phplem4on  6353  dif1en  6364
  Copyright terms: Public domain W3C validator