| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfplq0qs | Unicode version | ||
| Description: Addition on non-negative fractions. This definition is similar to df-plq0 6617 but expands Q0 (Contributed by Jim Kingdon, 24-Nov-2019.) |
| Ref | Expression |
|---|---|
| dfplq0qs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-plq0 6617 |
. 2
| |
| 2 | df-nq0 6615 |
. . . . . 6
| |
| 3 | 2 | eleq2i 2145 |
. . . . 5
|
| 4 | 2 | eleq2i 2145 |
. . . . 5
|
| 5 | 3, 4 | anbi12i 447 |
. . . 4
|
| 6 | 5 | anbi1i 445 |
. . 3
|
| 7 | 6 | oprabbii 5580 |
. 2
|
| 8 | 1, 7 | eqtri 2101 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-oprab 5536 df-nq0 6615 df-plq0 6617 |
| This theorem is referenced by: addnnnq0 6639 |
| Copyright terms: Public domain | W3C validator |