| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > minmax | Unicode version | ||
| Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 8-Feb-2021.) |
| Ref | Expression |
|---|---|
| minmax |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl 7369 |
. . . . . . . . . . . 12
| |
| 2 | elprg 3418 |
. . . . . . . . . . . 12
| |
| 3 | 1, 2 | syl 14 |
. . . . . . . . . . 11
|
| 4 | 3 | adantl 271 |
. . . . . . . . . 10
|
| 5 | simpr 108 |
. . . . . . . . . . . . . 14
| |
| 6 | 5 | recnd 7147 |
. . . . . . . . . . . . 13
|
| 7 | simpll 495 |
. . . . . . . . . . . . . 14
| |
| 8 | 7 | recnd 7147 |
. . . . . . . . . . . . 13
|
| 9 | 6, 8 | negcon1d 7413 |
. . . . . . . . . . . 12
|
| 10 | eqcom 2083 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | syl6bb 194 |
. . . . . . . . . . 11
|
| 12 | simplr 496 |
. . . . . . . . . . . . . 14
| |
| 13 | 12 | recnd 7147 |
. . . . . . . . . . . . 13
|
| 14 | 6, 13 | negcon1d 7413 |
. . . . . . . . . . . 12
|
| 15 | eqcom 2083 |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | syl6bb 194 |
. . . . . . . . . . 11
|
| 17 | 11, 16 | orbi12d 739 |
. . . . . . . . . 10
|
| 18 | 4, 17 | bitrd 186 |
. . . . . . . . 9
|
| 19 | 18 | rabbidva 2592 |
. . . . . . . 8
|
| 20 | dfrab2 3239 |
. . . . . . . . . 10
| |
| 21 | dfpr2 3417 |
. . . . . . . . . . 11
| |
| 22 | 21 | ineq1i 3163 |
. . . . . . . . . 10
|
| 23 | 20, 22 | eqtr4i 2104 |
. . . . . . . . 9
|
| 24 | renegcl 7369 |
. . . . . . . . . . 11
| |
| 25 | renegcl 7369 |
. . . . . . . . . . 11
| |
| 26 | prssi 3543 |
. . . . . . . . . . 11
| |
| 27 | 24, 25, 26 | syl2an 283 |
. . . . . . . . . 10
|
| 28 | df-ss 2986 |
. . . . . . . . . 10
| |
| 29 | 27, 28 | sylib 120 |
. . . . . . . . 9
|
| 30 | 23, 29 | syl5eq 2125 |
. . . . . . . 8
|
| 31 | 19, 30 | eqtrd 2113 |
. . . . . . 7
|
| 32 | 31 | supeq1d 6400 |
. . . . . 6
|
| 33 | maxcl 10096 |
. . . . . . 7
| |
| 34 | 24, 25, 33 | syl2an 283 |
. . . . . 6
|
| 35 | 32, 34 | eqeltrd 2155 |
. . . . 5
|
| 36 | 35 | renegcld 7484 |
. . . 4
|
| 37 | simpr 108 |
. . . . . . . . 9
| |
| 38 | 37 | negeqd 7303 |
. . . . . . . 8
|
| 39 | maxle1 10097 |
. . . . . . . . . 10
| |
| 40 | 24, 25, 39 | syl2an 283 |
. . . . . . . . 9
|
| 41 | 40 | ad2antrr 471 |
. . . . . . . 8
|
| 42 | 38, 41 | eqbrtrd 3805 |
. . . . . . 7
|
| 43 | simpll 495 |
. . . . . . . 8
| |
| 44 | simplll 499 |
. . . . . . . . 9
| |
| 45 | 37, 44 | eqeltrd 2155 |
. . . . . . . 8
|
| 46 | 32 | negeqd 7303 |
. . . . . . . . . . . 12
|
| 47 | 46 | breq2d 3797 |
. . . . . . . . . . 11
|
| 48 | 47 | notbid 624 |
. . . . . . . . . 10
|
| 49 | 48 | adantr 270 |
. . . . . . . . 9
|
| 50 | 34 | adantr 270 |
. . . . . . . . . . 11
|
| 51 | 50 | renegcld 7484 |
. . . . . . . . . 10
|
| 52 | simpr 108 |
. . . . . . . . . 10
| |
| 53 | 51, 52 | lenltd 7227 |
. . . . . . . . 9
|
| 54 | lenegcon1 7570 |
. . . . . . . . . 10
| |
| 55 | 34, 54 | sylan 277 |
. . . . . . . . 9
|
| 56 | 49, 53, 55 | 3bitr2d 214 |
. . . . . . . 8
|
| 57 | 43, 45, 56 | syl2anc 403 |
. . . . . . 7
|
| 58 | 42, 57 | mpbird 165 |
. . . . . 6
|
| 59 | simpr 108 |
. . . . . . . . 9
| |
| 60 | 59 | negeqd 7303 |
. . . . . . . 8
|
| 61 | maxle2 10098 |
. . . . . . . . . 10
| |
| 62 | 24, 25, 61 | syl2an 283 |
. . . . . . . . 9
|
| 63 | 62 | ad2antrr 471 |
. . . . . . . 8
|
| 64 | 60, 63 | eqbrtrd 3805 |
. . . . . . 7
|
| 65 | simpll 495 |
. . . . . . . 8
| |
| 66 | simpllr 500 |
. . . . . . . . 9
| |
| 67 | 59, 66 | eqeltrd 2155 |
. . . . . . . 8
|
| 68 | 65, 67, 56 | syl2anc 403 |
. . . . . . 7
|
| 69 | 64, 68 | mpbird 165 |
. . . . . 6
|
| 70 | elpri 3421 |
. . . . . . 7
| |
| 71 | 70 | adantl 271 |
. . . . . 6
|
| 72 | 58, 69, 71 | mpjaodan 744 |
. . . . 5
|
| 73 | 72 | ralrimiva 2434 |
. . . 4
|
| 74 | 24 | ad3antrrr 475 |
. . . . . . . . 9
|
| 75 | 25 | ad3antlr 476 |
. . . . . . . . 9
|
| 76 | simplr 496 |
. . . . . . . . . 10
| |
| 77 | 76 | renegcld 7484 |
. . . . . . . . 9
|
| 78 | 34 | ad2antrr 471 |
. . . . . . . . . 10
|
| 79 | simpr 108 |
. . . . . . . . . . 11
| |
| 80 | 46 | breq1d 3795 |
. . . . . . . . . . . 12
|
| 81 | 80 | ad2antrr 471 |
. . . . . . . . . . 11
|
| 82 | 79, 81 | mpbid 145 |
. . . . . . . . . 10
|
| 83 | 78, 76, 82 | ltnegcon1d 7625 |
. . . . . . . . 9
|
| 84 | maxleastlt 10101 |
. . . . . . . . 9
| |
| 85 | 74, 75, 77, 83, 84 | syl22anc 1170 |
. . . . . . . 8
|
| 86 | simplll 499 |
. . . . . . . . . 10
| |
| 87 | 86, 76 | ltnegd 7623 |
. . . . . . . . 9
|
| 88 | simpllr 500 |
. . . . . . . . . 10
| |
| 89 | 88, 76 | ltnegd 7623 |
. . . . . . . . 9
|
| 90 | 87, 89 | orbi12d 739 |
. . . . . . . 8
|
| 91 | 85, 90 | mpbird 165 |
. . . . . . 7
|
| 92 | breq1 3788 |
. . . . . . . . 9
| |
| 93 | breq1 3788 |
. . . . . . . . 9
| |
| 94 | 92, 93 | rexprg 3444 |
. . . . . . . 8
|
| 95 | 94 | ad2antrr 471 |
. . . . . . 7
|
| 96 | 91, 95 | mpbird 165 |
. . . . . 6
|
| 97 | 96 | ex 113 |
. . . . 5
|
| 98 | 97 | ralrimiva 2434 |
. . . 4
|
| 99 | breq2 3789 |
. . . . . . . 8
| |
| 100 | 99 | notbid 624 |
. . . . . . 7
|
| 101 | 100 | ralbidv 2368 |
. . . . . 6
|
| 102 | breq1 3788 |
. . . . . . . 8
| |
| 103 | 102 | imbi1d 229 |
. . . . . . 7
|
| 104 | 103 | ralbidv 2368 |
. . . . . 6
|
| 105 | 101, 104 | anbi12d 456 |
. . . . 5
|
| 106 | 105 | rspcev 2701 |
. . . 4
|
| 107 | 36, 73, 98, 106 | syl12anc 1167 |
. . 3
|
| 108 | prssi 3543 |
. . 3
| |
| 109 | 107, 108 | infrenegsupex 8682 |
. 2
|
| 110 | 109, 46 | eqtrd 2113 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 ax-caucvg 7096 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-isom 4931 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-sup 6397 df-inf 6398 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-n0 8289 df-z 8352 df-uz 8620 df-rp 8735 df-iseq 9432 df-iexp 9476 df-cj 9729 df-re 9730 df-im 9731 df-rsqrt 9884 df-abs 9885 |
| This theorem is referenced by: min1inf 10113 min2inf 10114 lemininf 10115 ltmininf 10116 |
| Copyright terms: Public domain | W3C validator |