ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjssun Unicode version

Theorem disjssun 3307
Description: Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
disjssun  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
C_  ( B  u.  C )  <->  A  C_  C
) )

Proof of Theorem disjssun
StepHypRef Expression
1 indi 3211 . . . . 5  |-  ( A  i^i  ( B  u.  C ) )  =  ( ( A  i^i  B )  u.  ( A  i^i  C ) )
21equncomi 3118 . . . 4  |-  ( A  i^i  ( B  u.  C ) )  =  ( ( A  i^i  C )  u.  ( A  i^i  B ) )
3 uneq2 3120 . . . . 5  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  i^i  C )  u.  ( A  i^i  B ) )  =  ( ( A  i^i  C
)  u.  (/) ) )
4 un0 3278 . . . . 5  |-  ( ( A  i^i  C )  u.  (/) )  =  ( A  i^i  C )
53, 4syl6eq 2129 . . . 4  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  i^i  C )  u.  ( A  i^i  B ) )  =  ( A  i^i  C ) )
62, 5syl5eq 2125 . . 3  |-  ( ( A  i^i  B )  =  (/)  ->  ( A  i^i  ( B  u.  C ) )  =  ( A  i^i  C
) )
76eqeq1d 2089 . 2  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  i^i  ( B  u.  C ) )  =  A  <->  ( A  i^i  C )  =  A ) )
8 df-ss 2986 . 2  |-  ( A 
C_  ( B  u.  C )  <->  ( A  i^i  ( B  u.  C
) )  =  A )
9 df-ss 2986 . 2  |-  ( A 
C_  C  <->  ( A  i^i  C )  =  A )
107, 8, 93bitr4g 221 1  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
C_  ( B  u.  C )  <->  A  C_  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1284    u. cun 2971    i^i cin 2972    C_ wss 2973   (/)c0 3251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator