![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > un0 | Unicode version |
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
un0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3255 |
. . . 4
![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biorfi 697 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | bicomi 130 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | uneqri 3114 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-dif 2975 df-un 2977 df-nul 3252 |
This theorem is referenced by: un00 3290 disjssun 3307 difun2 3322 difdifdirss 3327 disjpr2 3456 prprc1 3500 diftpsn3 3527 iununir 3759 suc0 4166 sucprc 4167 fvun1 5260 fmptpr 5376 fvunsng 5378 fvsnun1 5381 fvsnun2 5382 fsnunfv 5384 fsnunres 5385 rdg0 5997 omv2 6068 unsnfidcex 6385 fzsuc2 9096 fseq1p1m1 9111 |
Copyright terms: Public domain | W3C validator |