| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmun | Unicode version | ||
| Description: The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unab 3231 |
. . 3
| |
| 2 | brun 3831 |
. . . . . 6
| |
| 3 | 2 | exbii 1536 |
. . . . 5
|
| 4 | 19.43 1559 |
. . . . 5
| |
| 5 | 3, 4 | bitr2i 183 |
. . . 4
|
| 6 | 5 | abbii 2194 |
. . 3
|
| 7 | 1, 6 | eqtri 2101 |
. 2
|
| 8 | df-dm 4373 |
. . 3
| |
| 9 | df-dm 4373 |
. . 3
| |
| 10 | 8, 9 | uneq12i 3124 |
. 2
|
| 11 | df-dm 4373 |
. 2
| |
| 12 | 7, 10, 11 | 3eqtr4ri 2112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-br 3786 df-dm 4373 |
| This theorem is referenced by: rnun 4752 dmpropg 4813 dmtpop 4816 fntpg 4975 fnun 5025 |
| Copyright terms: Public domain | W3C validator |