ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fntpg Unicode version

Theorem fntpg 4975
Description: Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
Assertion
Ref Expression
fntpg  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  Fn  { X ,  Y ,  Z }
)

Proof of Theorem fntpg
StepHypRef Expression
1 funtpg 4970 . 2  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } )
2 dmsnopg 4812 . . . . . . . . . 10  |-  ( A  e.  F  ->  dom  {
<. X ,  A >. }  =  { X }
)
323ad2ant1 959 . . . . . . . . 9  |-  ( ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  ->  dom  { <. X ,  A >. }  =  { X } )
4 dmsnopg 4812 . . . . . . . . . 10  |-  ( B  e.  G  ->  dom  {
<. Y ,  B >. }  =  { Y }
)
543ad2ant2 960 . . . . . . . . 9  |-  ( ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  ->  dom  { <. Y ,  B >. }  =  { Y } )
63, 5jca 300 . . . . . . . 8  |-  ( ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  ->  ( dom  { <. X ,  A >. }  =  { X }  /\  dom  {
<. Y ,  B >. }  =  { Y }
) )
763ad2ant2 960 . . . . . . 7  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( dom  { <. X ,  A >. }  =  { X }  /\  dom  { <. Y ,  B >. }  =  { Y }
) )
8 uneq12 3121 . . . . . . 7  |-  ( ( dom  { <. X ,  A >. }  =  { X }  /\  dom  { <. Y ,  B >. }  =  { Y }
)  ->  ( dom  {
<. X ,  A >. }  u.  dom  { <. Y ,  B >. } )  =  ( { X }  u.  { Y } ) )
97, 8syl 14 . . . . . 6  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( dom  { <. X ,  A >. }  u.  dom  {
<. Y ,  B >. } )  =  ( { X }  u.  { Y } ) )
10 df-pr 3405 . . . . . 6  |-  { X ,  Y }  =  ( { X }  u.  { Y } )
119, 10syl6eqr 2131 . . . . 5  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( dom  { <. X ,  A >. }  u.  dom  {
<. Y ,  B >. } )  =  { X ,  Y } )
12 df-pr 3405 . . . . . . . 8  |-  { <. X ,  A >. ,  <. Y ,  B >. }  =  ( { <. X ,  A >. }  u.  { <. Y ,  B >. } )
1312dmeqi 4554 . . . . . . 7  |-  dom  { <. X ,  A >. , 
<. Y ,  B >. }  =  dom  ( {
<. X ,  A >. }  u.  { <. Y ,  B >. } )
1413eqeq1i 2088 . . . . . 6  |-  ( dom 
{ <. X ,  A >. ,  <. Y ,  B >. }  =  { X ,  Y }  <->  dom  ( {
<. X ,  A >. }  u.  { <. Y ,  B >. } )  =  { X ,  Y } )
15 dmun 4560 . . . . . . 7  |-  dom  ( { <. X ,  A >. }  u.  { <. Y ,  B >. } )  =  ( dom  { <. X ,  A >. }  u.  dom  { <. Y ,  B >. } )
1615eqeq1i 2088 . . . . . 6  |-  ( dom  ( { <. X ,  A >. }  u.  { <. Y ,  B >. } )  =  { X ,  Y }  <->  ( dom  {
<. X ,  A >. }  u.  dom  { <. Y ,  B >. } )  =  { X ,  Y } )
1714, 16bitri 182 . . . . 5  |-  ( dom 
{ <. X ,  A >. ,  <. Y ,  B >. }  =  { X ,  Y }  <->  ( dom  {
<. X ,  A >. }  u.  dom  { <. Y ,  B >. } )  =  { X ,  Y } )
1811, 17sylibr 132 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  dom  { <. X ,  A >. ,  <. Y ,  B >. }  =  { X ,  Y } )
19 dmsnopg 4812 . . . . . 6  |-  ( C  e.  H  ->  dom  {
<. Z ,  C >. }  =  { Z }
)
20193ad2ant3 961 . . . . 5  |-  ( ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  ->  dom  { <. Z ,  C >. }  =  { Z } )
21203ad2ant2 960 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  dom  { <. Z ,  C >. }  =  { Z } )
2218, 21uneq12d 3127 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( dom  { <. X ,  A >. ,  <. Y ,  B >. }  u.  dom  {
<. Z ,  C >. } )  =  ( { X ,  Y }  u.  { Z } ) )
23 df-tp 3406 . . . . 5  |-  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  =  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } )
2423dmeqi 4554 . . . 4  |-  dom  { <. X ,  A >. , 
<. Y ,  B >. , 
<. Z ,  C >. }  =  dom  ( {
<. X ,  A >. , 
<. Y ,  B >. }  u.  { <. Z ,  C >. } )
25 dmun 4560 . . . 4  |-  dom  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } )  =  ( dom  { <. X ,  A >. , 
<. Y ,  B >. }  u.  dom  { <. Z ,  C >. } )
2624, 25eqtri 2101 . . 3  |-  dom  { <. X ,  A >. , 
<. Y ,  B >. , 
<. Z ,  C >. }  =  ( dom  { <. X ,  A >. , 
<. Y ,  B >. }  u.  dom  { <. Z ,  C >. } )
27 df-tp 3406 . . 3  |-  { X ,  Y ,  Z }  =  ( { X ,  Y }  u.  { Z } )
2822, 26, 273eqtr4g 2138 . 2  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  dom  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  =  { X ,  Y ,  Z }
)
29 df-fn 4925 . 2  |-  ( {
<. X ,  A >. , 
<. Y ,  B >. , 
<. Z ,  C >. }  Fn  { X ,  Y ,  Z }  <->  ( Fun  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  /\  dom  {
<. X ,  A >. , 
<. Y ,  B >. , 
<. Z ,  C >. }  =  { X ,  Y ,  Z }
) )
301, 28, 29sylanbrc 408 1  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  Fn  { X ,  Y ,  Z }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433    =/= wne 2245    u. cun 2971   {csn 3398   {cpr 3399   {ctp 3400   <.cop 3401   dom cdm 4363   Fun wfun 4916    Fn wfn 4917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-tp 3406  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-fun 4924  df-fn 4925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator