ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds1lem Unicode version

Theorem dvds1lem 10206
Description: A lemma to assist theorems of  || with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvds1lem.1  |-  ( ph  ->  ( J  e.  ZZ  /\  K  e.  ZZ ) )
dvds1lem.2  |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
dvds1lem.3  |-  ( (
ph  /\  x  e.  ZZ )  ->  Z  e.  ZZ )
dvds1lem.4  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( x  x.  J )  =  K  ->  ( Z  x.  M )  =  N ) )
Assertion
Ref Expression
dvds1lem  |-  ( ph  ->  ( J  ||  K  ->  M  ||  N ) )
Distinct variable groups:    x, J    x, K    x, M    x, N    ph, x
Allowed substitution hint:    Z( x)

Proof of Theorem dvds1lem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dvds1lem.3 . . . 4  |-  ( (
ph  /\  x  e.  ZZ )  ->  Z  e.  ZZ )
2 dvds1lem.4 . . . 4  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( x  x.  J )  =  K  ->  ( Z  x.  M )  =  N ) )
3 oveq1 5539 . . . . . 6  |-  ( z  =  Z  ->  (
z  x.  M )  =  ( Z  x.  M ) )
43eqeq1d 2089 . . . . 5  |-  ( z  =  Z  ->  (
( z  x.  M
)  =  N  <->  ( Z  x.  M )  =  N ) )
54rspcev 2701 . . . 4  |-  ( ( Z  e.  ZZ  /\  ( Z  x.  M
)  =  N )  ->  E. z  e.  ZZ  ( z  x.  M
)  =  N )
61, 2, 5syl6an 1363 . . 3  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( ( x  x.  J )  =  K  ->  E. z  e.  ZZ  ( z  x.  M )  =  N ) )
76rexlimdva 2477 . 2  |-  ( ph  ->  ( E. x  e.  ZZ  ( x  x.  J )  =  K  ->  E. z  e.  ZZ  ( z  x.  M
)  =  N ) )
8 dvds1lem.1 . . 3  |-  ( ph  ->  ( J  e.  ZZ  /\  K  e.  ZZ ) )
9 divides 10197 . . 3  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  ||  K  <->  E. x  e.  ZZ  (
x  x.  J )  =  K ) )
108, 9syl 14 . 2  |-  ( ph  ->  ( J  ||  K  <->  E. x  e.  ZZ  (
x  x.  J )  =  K ) )
11 dvds1lem.2 . . 3  |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
12 divides 10197 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  E. z  e.  ZZ  (
z  x.  M )  =  N ) )
1311, 12syl 14 . 2  |-  ( ph  ->  ( M  ||  N  <->  E. z  e.  ZZ  (
z  x.  M )  =  N ) )
147, 10, 133imtr4d 201 1  |-  ( ph  ->  ( J  ||  K  ->  M  ||  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   E.wrex 2349   class class class wbr 3785  (class class class)co 5532    x. cmul 6986   ZZcz 8351    || cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-iota 4887  df-fv 4930  df-ov 5535  df-dvds 10196
This theorem is referenced by:  negdvdsb  10211  dvdsnegb  10212  muldvds1  10220  muldvds2  10221  dvdscmul  10222  dvdsmulc  10223  dvdscmulr  10224  dvdsmulcr  10225
  Copyright terms: Public domain W3C validator