ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negdvdsb Unicode version

Theorem negdvdsb 10211
Description: An integer divides another iff its negation does. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
negdvdsb  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  -u M  ||  N ) )

Proof of Theorem negdvdsb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
2 znegcl 8382 . . . 4  |-  ( M  e.  ZZ  ->  -u M  e.  ZZ )
32anim1i 333 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u M  e.  ZZ  /\  N  e.  ZZ ) )
4 znegcl 8382 . . . 4  |-  ( x  e.  ZZ  ->  -u x  e.  ZZ )
54adantl 271 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  -u x  e.  ZZ )
6 zcn 8356 . . . . . . 7  |-  ( x  e.  ZZ  ->  x  e.  CC )
7 zcn 8356 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
8 mul2neg 7502 . . . . . . 7  |-  ( ( x  e.  CC  /\  M  e.  CC )  ->  ( -u x  x.  -u M )  =  ( x  x.  M ) )
96, 7, 8syl2anr 284 . . . . . 6  |-  ( ( M  e.  ZZ  /\  x  e.  ZZ )  ->  ( -u x  x.  -u M )  =  ( x  x.  M ) )
109adantlr 460 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( -u x  x.  -u M )  =  ( x  x.  M
) )
1110eqeq1d 2089 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( -u x  x.  -u M )  =  N  <->  ( x  x.  M )  =  N ) )
1211biimprd 156 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  =  N  ->  ( -u x  x.  -u M )  =  N ) )
131, 3, 5, 12dvds1lem 10206 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  -> 
-u M  ||  N
) )
14 mulneg12 7501 . . . . . . 7  |-  ( ( x  e.  CC  /\  M  e.  CC )  ->  ( -u x  x.  M )  =  ( x  x.  -u M
) )
156, 7, 14syl2anr 284 . . . . . 6  |-  ( ( M  e.  ZZ  /\  x  e.  ZZ )  ->  ( -u x  x.  M )  =  ( x  x.  -u M
) )
1615adantlr 460 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( -u x  x.  M )  =  ( x  x.  -u M
) )
1716eqeq1d 2089 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( -u x  x.  M )  =  N  <->  ( x  x.  -u M )  =  N ) )
1817biimprd 156 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  -u M )  =  N  ->  ( -u x  x.  M )  =  N ) )
193, 1, 5, 18dvds1lem 10206 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u M  ||  N  ->  M  ||  N
) )
2013, 19impbid 127 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  -u M  ||  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   CCcc 6979    x. cmul 6986   -ucneg 7280   ZZcz 8351    || cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-z 8352  df-dvds 10196
This theorem is referenced by:  absdvdsb  10213  zdvdsdc  10216  bezoutlemzz  10391  lcmneg  10456
  Copyright terms: Public domain W3C validator