ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcnv Unicode version

Theorem elcnv 4530
Description: Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
elcnv  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  y R x ) )
Distinct variable groups:    x, y, A   
x, R, y

Proof of Theorem elcnv
StepHypRef Expression
1 df-cnv 4371 . . 3  |-  `' R  =  { <. x ,  y
>.  |  y R x }
21eleq2i 2145 . 2  |-  ( A  e.  `' R  <->  A  e.  {
<. x ,  y >.  |  y R x } )
3 elopab 4013 . 2  |-  ( A  e.  { <. x ,  y >.  |  y R x }  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  y R x ) )
42, 3bitri 182 1  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  y R x ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   <.cop 3401   class class class wbr 3785   {copab 3838   `'ccnv 4362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840  df-cnv 4371
This theorem is referenced by:  elcnv2  4531
  Copyright terms: Public domain W3C validator